簡易檢索 / 詳目顯示

研究生: 廖重期
Chung-Chi Liau
論文名稱: 以反應式離子束濺鍍法製備掺鉺氧化鋅薄膜之特性分析與研究
Characterization of Er-doped ZnO prepared by reactive ion beam sputter deposition
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huangc
李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
唐志雄
Chi-Shung Tang
韓斌
Pin Han
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 離子束濺鍍法氧化鋅稀土元素
外文關鍵詞: Ion beam sputter deposition, ZnO, Rare earth
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以雙離子槍反應式離子束濺鍍法沉積摻鉺氧化鋅薄膜,藉由控制靶材所照射的離子電流以控制濺擊產率而達到控制鉺摻雜濃度之目的。在本實驗中摻鉺的氧化鋅薄膜可以得到位於近紅外範圍之1.0 (4I11/2 → 4I15/2) 及1.54 m (4I13/2 → 4I15/2) 放射譜線,其中1.54 m是目前光纖中最低損耗之波段,將其應用於遠距離通訊可以大幅減少通訊中繼站之設立,進而達到降低通訊成本之需求。本論文中,含鉺濃度為0.1到3.6 at.%之間的氧化鋅薄膜於氧氣氛下退火10分鐘之後都有1.54 m的放射譜線,而含有鉺0.5 at.%之薄膜具有最佳1.54 m 發光強度,在XPS的分析方面發現當薄膜中的非晶格氧的比例越少時,其1.54 m的發光特性越佳。在電性方面,當鉺濃度達1.1 at.% 則具有最佳電性,其電子濃度可以達到2.3 × 1019 cm-3,而薄膜電阻率則可以降到0.2 Ωcm。選用此最佳電性的鉺濃度作為n型層並選用p型矽基板做為p型層來製作異質p-n接面二極體,製作完成之二極體在經由700°C退火3分鐘之後可以得到典型的p-n二極體之I-V曲線,其臨限電壓為3.5 V,且當其逆偏電壓為20 V時具有30 μA之漏電流值。


Er-doped ZnO (Er:ZnO) thin films were prepared by dual beam reactive ion beam sputter deposition. Er:ZnO with Er concentration from 0.1 to 3.6 at.% was achieved by adjusting Er target ion beam current. All Er:ZnO shows characteristic Er3+ inner shell 4f transition at 1.0 (4I11/2 → 4I15/2) and 1.54 m (4I13/2 → 4I15/2). The 1.54 m emission is of special interests that the attenuation in silica optical fiber is the lowest. Er:ZnO with Er concentration at 0.5 at.% shows the strongest 1.54 m emission after annealing in oxygen ambient for 10 minutes. XPS analysis shows that as the amount of oxygen atoms located in oxygen deficient ZnO matrixes decreases, the 1.54 m emission increases. Electrical property measurement shows that highest electron concentration of 2.3 × 1019 cm-3 and lowest resistivity of 0.2 Ωcm can be achieved with an Er concentration of 1.1 at. %. ZnO/Si hetro-junction was fabricated using Er:ZnO on p-Si (100). The threshold voltage is 3.5 V and the reverse current under reverse bias of -20 V is 30 A.

論文摘要 .....................................................................I Abstract ...................................................................III 目錄 .....................................................................V 圖目錄 ...................................................................VII 表目錄 .....................................................................X 第一章 緒論 ............................................................1 第二章 文獻回顧 ............................................................3 2.1氧化鋅簡介 ............................................................3 2.1.1氧化鋅特性 ............................................................3 2.1.2 氧化鋅薄膜之發光機制 ...................................................4 2.1.3 氧化鋅晶格振動模態 ...................................................5 2.1.4 氧化鋅之應用 ............................................................6 2.2 稀土元素簡介 ............................................................8 2.3 鉺元素簡介 ...........................................................10 2.4 摻鉺半導體文獻回顧 ..................................................14 2.5 掺鉺氧化鋅半導體文獻回顧 .........................................16 2.6 其他稀土元素之相關應用 ..................................................20 2.7 摻鉺氧化鋅之p-n二極體 ..................................................22 第三章 離子束濺鍍系統 ..................................................24 3.1 典型離子束濺鍍系統工作原理與相關應用 ................................24 3.2 常見離子源種類簡介 ..................................................28 A. 網格式離子源 ...........................................................29 B. 無網格式離子源 ...........................................................32 C. 毛細式離子源 ...........................................................33 3.3 自組式離子束濺鍍系統 ..................................................37 第四章 實驗流程及儀器介紹 ..................................................42 4.1 實驗流程與參數選定 ..................................................42 A. 實驗流程: ...........................................................42 4.2分析儀器 ...........................................................45 4.2.1 X光光電子譜 (X-ray photoelectron spectroscopy, XPS) .............45 4.2.2 X-ray 繞射 (X-ray diffraction, XRD) ...............................47 4.2.3 光激發螢光光譜 (photoluminescence spectroscopy, PL) .............49 4.2.4 場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) ....................................................................50 4.2.5 穿透率量測 (transmission) .........................................51 4.2.6 霍爾效應量測 (Hall effect) .........................................53 4.2.7 拉曼光譜儀 (Micro-Raman spectroscopy) ................................58 第五章 實驗結果與討論 ..................................................59 5.1 場發射式掃描式電子顯微鏡分析 .........................................59 5.2 X-ray 繞射分析 ...........................................................63 5.3 光激發螢光光譜分析 ..................................................67 5.4 霍爾效應 (Hall effect) 之分析 .........................................74 5.5 穿透率之分析 ...........................................................77 5.6 拉曼 (Raman) 分析 ..................................................78 5.7 XPS分析 ...........................................................80 5.8 Er:ZnO之異質p-n接面二極體 .........................................84 第六章 結論 ...........................................................86 References ...........................................................88 個人簡歷 ...................................................................102 List of Publications .................................................103

[1] F. Yakuphanoglu, Y. Caglar, S. Ilican, and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, Vol. 394, pp. 86-92, 2007.
[2] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and device,” J. Appl. Phys., Vol. 98, pp. 041301-1 - 041301-103, 2005.
[3] Anderson Janotti and Chris G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B., Vol. 76, pp. 165202-1 - 165202-22, 2007.
[4] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong, and Y. P. Xie, “Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering,” J. Appl. Phys., Vol. 99, pp. 123510-1-123510-5, 2006.
[5] S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
[6] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnology, Vol. 18, pp. 1-8, 2007.
[7] B. Lin, Z. Fu, Y. Jia, and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., Vol. 148, pp. 110-113, 2001.
[8] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
[9] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films
prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett., Vol. 75, pp. 2761-2763, 1999.
[10] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7990, 1996.
[11] C. Y. Zhao, X. H. Wang Zhang, Z. G. Ju, C. X. B. Yao. D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, Vol. 519, pp. 1976-1979, 2011.
[12] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D.Z. Shen, and X. W. Fan, “Ultraviolet Electroluminescence from MgZnO-Based Heterojuction Light-Emitting Diodes,” J. Phys. Chem. C, Vol. 113, pp. 2980-2982, 2009.
[13] S. Krishnamoorthy and A. A. Iliadis, “Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices,” Solid-State Electron., Vol. 50, pp. 1113-1118, 2006.
[14] M. Egashira, Y. Shimizu, and Y. Takao, “Trimethylaminc sensor based on semiconductive metal oxides for detection of fish reshness,” Sens. Actuators, B, Vol. 1, pp. 108-112, 1990.
[15] H. Nanto, H. Sokooshi, and T. Kawai, “Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods,” Sens. Actuators, B, Vol. 13, pp. 715-717, 1993.
[16] S. Basu and A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application,” Sens. Actuators, B, Vol. 22, pp. 83-87, 1994.
[17] U. Lampe and J. Muller, “Thin-film oxygen sensors made of reactively sputtered ZnO,” Sens. Actuators, B, Vol. 18, pp. 269-284, 1989.
[18] F. Chaabouni, M. Abaab, and B. Rezig, “Metrological characteristics of ZnO oxygen sensor at room temperature,” Sens. Actuators, B, Vol. 100, pp. 200-204, 2004.
[19] Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wanga, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., Vol. 84, pp. 3654-3656, 2004.
[20] H. Nanto, T. Minami, and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity,” J. Appl. Phys., Vol. 60, pp. 482-484, 1986.
[21] Z. L. Wang, “Nanostructures of zinc oxide,” Mater. Today, Vol. 7, pp. 26-33, 2004.
[22] V. A. Fonoberov and A. A. Balandin, “ZnO quantum dots: physical properties and optoelectronic applications,” J. Nanoelectron. Optoelectron., Vol. 19, pp. 19-38, 2006.
[23] N. Hongsith, E. Wongrat, T. Kerdcharoen, and S. Choopun, ” Sensor response formula for sensor based on ZnO nanostructures, ” Sens. Actuators, B, Vol. 144, pp. 67-72, 2010.
[24] J. Yi, J. M. Lee, and W. I. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators, B, Vol. 155, pp. 264-269, 2011.
[25] K. M. Kim, H. R. Kim, K. I. Choi, H. J. Kim, and J. H. Lee, “ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications,” Sens. Actuators, B, Vol. 155, pp. 745-751, 2011.
[26] R. Jaramillo and S. Ramanathan, “Kelvin force microscopy studies of work function of transparent conducting ZnO:Al electrodes synthesized under varying oxygen pressures,” Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 602-605, 2011.
[27] H. Zhang, J. Tang, J. Yuan, J. Ma, N. Shinya, K. Nakajima, H. Murakami, T. Ohkubo, and L. C. Oin, “Nanostructured LaB6 field emitter with lowest apical work function,” Nano Lett., Vol. 10, pp 3539-3544, 2010.
[28] T. Tsuchiya, A. Watanaba, T. Nakajima, and T. Kumagai, “Preparation of Y2O3:Eu thin films by excimer-laser-assisted metal organic deposition,” Appl. Phys. A, Vol. 101, pp. 681-684, 2010.
[29] L. Wang and Y. Wang, “Luminescent properties of Eu3+-activated Sr3B2SiO8: A red-emitting phosphor for white light-emitting diodes,” J. Lumin., Vol. 131, pp. 1479-1481, 2011.
[30] Y. Song, H. You, M. Yang, Y. Zheng, K. Liu, G. Jia, Y. Huang, L. Zhang, and
H. Zhang, “Facile synthesis and luminescence of Sr5(PO4)3Cl:Eu2+ nanorod bundles via a hydrothermal route,” Inorg. Chem., Vol. 49, pp. 1674-1678, 2010.
[31] T. Saito and H. Kitazima, “Hard magnetic properties of anisotropic Sm–Fe–N magnets produced by compression shearing method,” J. Magn. Magn. Mater., Vol. 323, pp. 2154-2157, 2011.
[32] R. J. Westerwaal, R. G. Nyqvist, and W. G. Haije, “Testing facility for hydrogen storage materials designed to simulate application based conditions,” Rev. Sci. Instrum., Vol. 82, pp. 045107-1-045107-9, 2011.
[33] J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B, Vol. 79, pp. 25-28, 2004.
[34] S. B. Castor and J. B. Hedrick, “Rare earth elements,” Industrial Minerals and Rocks, pp. 769-792.
[35] A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys., Vol. 82, pp. 1-39, 1997.
[36] H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm electroluminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett., Vol. 43, pp. 943-945, 1983.
[37] H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy, ” Appl. Phys. Lett., Vol. 46, pp. 381-383,1985.
[38] D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y. H. Xie, and L. C. Kimerling, “Microstructure of erbium-implanted Si,” Appl. Phys. Lett., Vol. 58, pp. 2797-2799, 1991.
[39] J. L. Benton, J. Michel, L. C. Kimerling, D. C. Jascobson, Y. H. Xie, D. J. Eaglesham, E. A. Fitzgerald, and J. M. Poate, “The electrical and defect properties of erbium‐implanted silicon, ” J. Appl. Phys., Vol. 70, pp. 2667-2671, 1991.
[40] P. N. Favennec, H. L’Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, “Optical activation of Er3+ implanted in silicon by oxygen impurities,” Jpn. J. Appl. Phys., Vol. 29, pp. 524-526, 1990.
[41] S. Coffa, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si,” Phys. Rev. B, Vol. 49, pp. 16313-16320, 1994.
[42] M. Ishii, S. Komuro, T. Morikawa, and Aoyagi, “Local structure analysis of an optically active center in Er-doped ZnO thin film,” J. Appl. Phys., Vol. 89, pp. 3679-3684, 2001.
[43] S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “Highly erbium-doped zinc–oxide thin film prepared by laser ablation and its 1.54 mm emission dynamics,” J. Appl. Phys., Vol. 88, pp. 7129-7137, 2000.
[44] X. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, “Fabrication and optical transition dynamics of Er-doped ZnO thin films formed on Si substrates,” J. Lumin., Vol. 87, pp. 1254-1256, 2000.
[45] R. Perez-Casero, A. Gutierrez-Llorente, O. Pons-Moll, W. Seiler, R. M. Defourneau, D. Defourneau, E. Millon, J. Perriere, P. Goldner, and B. Viana, “Er-doped ZnO thin films grown by pulsed-laser deposition,” J. Appl. Phys., Vol. 97, pp. 054905-054913, 2005.
[46] X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, and X. W. Fan, “Room-temperature blue luminescence from ZnO Er thin films,” Thin solid Films, Vol. 413, pp. 257-261, 2002.
[47] H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, and H. Cui, “Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation,” Vacuum, Vol. 77, pp. 57-62, 2002.
[48] W. M. Jadwisienczak, H. J. Lozykowski, A. Xu, and B. Patel, “Visible emission from ZnO doped with rare-earth ions,” J. Electron. Mater., Vol. 31, pp. 776-785, 2002.
[49] S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 μm emission dynamics of erbium-doped zinc-oxide thin films,” Appl. Phys. Lett., Vol. 76, pp. 3935-3938, 2000.
[50] Y. Sun, Y. Lu, Y. Yu, X. Kong, Q. Zeng, Y. Zhang, and H. Zhang, “Template-assemble synthesis of ZnO:Er nanostructure and their upconversion luminescence properties,” J. Nanosci. Nanotechnol., Vol. 9, pp. 1316-1320, 2009.
[51] Z. Yu, Q. Yang, C. Xu, and Y. Liu, “ Upconversion white-light emitting of Tm3+ and Er3+ codoped oxyfluoride and its achieving mechanism,” Mater. Res. Bull., Vol. 44, pp. 1576-1580, 2009.
[52] A. C. Cefalas, S. Kobe, Z. Kollia, and E. Sarantopoulou, “Crystal field splitting of highly excited electronic states of the 4fn–1 5d electronic configuration of trivalent rare earth ions in wide band gap crystals,” Cryst. Eng., Vol. 5, pp. 203-208, 2002.
[53] D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, and P. H. Citrin, “Local structure of 1.54‐μm‐luminescence Er3+ implanted in Si,” Appl. Phys. Lett., Vol. 61, pp. 2181-2184, 1992.
[54] A. Terrasi, G. Franzo, S. Coffa, F. Priolo, F. d’Acapito, and S. Mobillio, “Evolution of the local envirement around Er upon thermal annealing in Er and O implanted Si,” Appl. Phys. Lett., Vol. 70, pp. 1712-1714, 1997.
[55] P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Leguillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett., Vol. 25, pp. 718-719, 1989.
[56] K. Lorenz and E. Alves, “Damage formation and annealing at low temperatures in ion implanted ZnO,” Appl. Phys., Vol. 87, pp. 191904-191907, 2005.
[57] X. Zhao, S. Harako, S. Noguchi, and S. Komuro, “Synthesis and optical properties of rare earths doped nano-semiconductors and their applications,” Int. J. Mod. Phys. B, Vol. 16, pp. 4294-4301, 2002.
[58] Z. Fleischman, C. Sandmann, V. Dierolf, M. White, Y. Zhao, J. Michel, M. A. Stolfi, and L. Dal Negro, “Multistep resonant excitation of erbium ion in thin silicon oxide layers,” Mater. Res. Soc. Symp. Proc., Vol. 866, pp. V1.5.1-V1.5.6, 2005.
[59] X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C, Vol. 111, pp. 15119-15124, 2007.
[60] Y. Liu, Q. Yang, and C. Xu, “Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism,” J. Appl. Phys., Vol. 104, pp. 064701-1-064701-6, 2008.
[61] Y. Liu, C. Xu, and Q. Yang, “White upconversion of rare-earth doped ZnO nanocrystals and its dependence on size of crystal particles and content of Yb3+ and Tm3+,” J. Appl. Phys., Vol. 105, pp. 084701-1-084701-6, 2009.
[62] H. Guo and Y. M. Qiao, “Preparation, characterization, and strong upconversion
of monodisperse Y2O3:Er3+,Yb3+ microspheres,” Opt. Mater., Vol. 31, pp. 583-589, 2009.
[63] P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys., Vol. 93, pp. 5008-5013, 2003.
[64] J. Suh, M. Dawson, and J. Hanes, “Real-time multiple-particle tracking applications to drug and gene delivery,” Adv. Drug Delivery Rev., Vol. 57, pp. 63-78, 2005.
[65] V. H. J. Frade, M. S. T. Goncalves, and J. C. V. P. Moura, “Synthesis of fluorescent water-soluble functionalised benzo [a] phenoxazinium salts,” Tetrahedron Lett., Vol. 47, pp. 8567-8570, 2006.
[66] L. Li, Z. Zhou, L. Feng, H. Li, and Y. Wu, “Spectroscopic and upconversion properties of Er3+Yb3+-codoped KLTN single crystal,” J. Alloys Compd., Vol. 509, pp. 6457-6461, 2011.
[67] S. J. Jiao, Z. Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, and X. W. Fan, “ZnO p-n junction light-emitting diodes fabricated on sapphire substrates,” Appl. Phys. Lett., Vol. 88, pp. 031911-1-031911-3, 2006.
[68] Z. P, Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Room temperature p-n ZnO blue-violet light-emitting diodes,” Appl. Phys. Lett., Vol. 90, pp. 042113-1-042113-3, 2007.
[69] T. Aoki, Y. Hatanaka, and D. C. Look, “ZnO diode fabricated by excimer-laser doping,” Appl. Phys. Lett., Vol. 76, pp. 3257-3258, 2000.
[70] S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang, “Fabrication of ZnO thin film diode using laser annealing,” Thin Solid films, Vol. 473, pp. 31-34, 2005.
[71] S. Harako, S. Yokoyama, K. Ide, X. Zhao, and S. Komoro, “Visible and infrared
electroluminescence from an Er-doped n-ZnO/p-Si light emitting diode,” Phys. Status Solidi A, Vol. 205, pp. 19-22, 2008.
[72] W. W. Liu, B. Yao, B. H. Li, J. Zheng, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, and X. W. Fan, “MgZnO/ZnO pen junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy,” Solid State Sci., Vol. 12, pp. 1567-1569, 2010.
[73] J. F. Mahoney, J. Perel, and A. T. Forrester, “Capillaritron: A new, versatile ion source”, Appl. Phys. Lett., Vol. 38, pp. 320-322, 1981.
[74] M. Bautsch, P. Varadinek, S. Wege, and H. Niedrig, “Compact and inexpensive quartz capillaritron source”, J. Vac. Sci. Technol., A, Vol. 12, pp. 591-594, 1994.
[75] L. C. Chao, D. Y. Tsai, and Y. R. Shih, “ZnO thin films deposited by capillaritron ion beam sputtering deposition,” Nucl. Instrum. Methods Phys. Res. B, Vol. 267, pp. 2874-2877, 2009.
[76] L. C. Chao, C. W. Chang, and D. Y. Tsai, “Erbium containing ZnO prepared by ion beam sputtering deposition and thermal,” Appl. Surf. Sci., Vol. 255, pp. 6525-6528, 2009.
[77] W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang, and D. Shen, “Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient,” Appl. Surf. Sci., Vol. 255, pp. 6745-6749, 2009.
[78] Y. C. Huang, L. W. Weng, W. Y. Uen, S. M. Lan, S. M. Liao, T. Y. Lin, Y. H. Huang, J. W. Chen, and T. N. Yang, “Intrinsic p-type ZnO films fabricated by atmospheric pressure metal organic chemical vapor deposition,” J. Vac. Sci. Technol., A, Vol. 28, pp. 1307-1311, 2010.
[79] X. Su, Z. Zhang, Y. Wang, and M. Zhu, “Synthesis and photoluminescence of aligned ZnO nanorods by thermal decomposition of zinc acetate at a substrate temperature of ~250 °C,” J. Phys. D: Appl. Phys., Vol. 38, pp. 3934-3935, 2005.
[80] L. C. Chao, M. Y. Hsieh, and S. H. Yang, “Effect of carrier gas species and flow rates on the properties of ZnO thin films prepared by chemical vapor deposition using zinc acetate dihydrate,” Appl. Surf. Sci., Vol. 254, pp. 7464-7468, 2008.
[81] Y. Chen, X. L. Xu, G. H. Zhang, H. Xue, and S. Y. Ma, “Blue shift of optical band gap in Er-doped ZnO thin films deposited by direct current reactive magnetron sputtering technique,” Physica E, Vol. 42, pp. 1713-1716, 2010.
[82] X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, and B. H. Zhao, “Preparation of Li and Er codoped ZnO thin films and their photoluminescence,” Thin Solid Films, Vol. 517, pp. 5134-5136, 2009.
[83] M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, and T. Srećković, “Raman study of structural disorder in ZnO nanopowders,” J. Raman Spectrosc., Vol. 41, pp. 914-921, 2010.
[84] N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci., Vol. 56, pp. 501-506, 1992.
[85] K. Hafidi, Y. Ijdiyaou, M. Azizan, E. L. Ameziane, A. Outzourhit, T. A. N. Nguyen Tan, and M. Brunel, “Interaction of oxygen with (Er + Si): formation of erbium pyrosilicate Er2Si207,” Appl. Surf. Sci., Vol. 108, pp. 251-256, 1997.

無法下載圖示 全文公開日期 2013/07/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE