簡易檢索 / 詳目顯示

研究生: 謝政軒
Cheng-Hsuan Hsieh
論文名稱: 壓電驅動系統於AFM頻率回授控制之分析
Analysis of Piezoelectric Actuating System in AFM Frequency Feedback Control
指導教授: 張以全
I-Tsyuen Chang
口試委員: 藍振洋
Chen-yang Lan
林顯易
Hsien-I Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 原子力顯微鏡系統識別比例積分控制器希爾伯特黃轉換壓電驅動器
外文關鍵詞: atomic force microscope, system identification, PI controller, Hilbert Huang transform, piezo actuator
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

原子力顯微鏡通常用於掃描奈米樣品,例如生物細胞,DNA等。由於掃描樣品的尺寸非常小,並且探針與表面之間的力有敏感的變化,因此原子力顯微鏡的準確性需求非常高,才可以獲取清晰的表面輪廓。本論文模擬出AFM系統,掃描模式為輕敲式,並用比例積分控制器做z軸壓電掃描器的控制。之後針對此項變異度高的探針的即時訊號,做經驗模態拆解,得到他的瞬時頻率,捨棄一般的震幅方面所需收斂條件,將瞬時頻率做回授訊號,增加掃描速度與精度。最後做實驗來得到最重要的z軸壓電驅動器之系統鑑定,得到他的波德圖,放入到模擬的控制系統做比對,以及應用瞬時頻率回授與振幅回授在鑑定系統中。


Atomic force microscopes are commonly used to scan nano samples, such as biological cells, DNA, etc. Because the size of the scanned sample is very small, and the force between the probe and the surface is sensitive to changes, the accuracy of the atomic force microscope needs to be very high to obtain a clear surface profile. This thesis simulates the AFM system, the scanning mode is tapping , and the proportional integral controller is used to control the z-axis piezoelectric scanner. Then, for the real-time signal of the probe with high variability, the signal is analyzed by Empirical Mode Decomposition to obtain its instantaneous frequency, and the general convergence conditions for amplitude are discarded. The instantaneous frequency is used as the feedback signal to increase the scanning speed and accuracy. Finally, experiment to get the system identification of the most important z-axis piezoelectric driver, get his Bode diagram, and put it into the simulated control system for comparison, and apply it to instantaneous frequency feedback and amplitude feedback in the identification system.

論文摘要-----I 英文摘要-----II 誌謝-----III 目錄-----IV 圖目錄-----V 1 介紹 1.1研究動機 1.2研究目的 1.3控制器設計 1.4希爾伯特-黃轉換 1.5系統識別 1.6電容式感測 1.7逆壓電效應 1.8文獻回顧 2 AFM系統模擬介紹 2.1探針的運動特徵 2.2質量彈簧阻尼系統 2.3凡得瓦力 2.4壓電掃描器 2.5AFM方塊圖 3 控制器設計之模擬架構 3.1系統模擬架構 3.2控制器設計 4 頻率回授 4.1EMD分析 4.2瞬時頻率回授 5 壓電驅動器之頻域響應 5.1系統鑑定 5.2壓電鑑定實驗架構 5.3實驗結果 6 結論與未來展望 6.1結論 6.2未來展望

[1]維基百科, ”原子力顯微鏡---維基百科自由的百科全書” ,https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C, 2017
[2]蔡毓楨, “原子力顯微鏡實作訓練教材”,國家圖書館, 2007
[3] ”原子力顯微鏡基本原理” , http://web1.knvs.tp.edu.tw/AFM/ch2.htm, 2008
[4] ” 原子力顯微鏡原理” , http://web1.knvs.tp.edu.tw/AFM/ch4.htm, 2008
[5] G. K. Bining and D. Smith, “Single-tube three dimensional scanner for scanning tunneling microscopy.” Rev. Sci. Instrum, vol. 58, pp. 1688-1689, 1986
[6] 許子晨, “希爾伯特-黃即時頻譜分析於原子力顯微鏡回授應用之研究”, 臺灣科技大學, 2018
[7] Abramovitch, Daniel Y and Andersson, Sean B and Pao, Lucy Y and Schitter, Georg, “A tutorial on the mechanisms, dynamics, and control of atomic force microscopes”, American Control Conference, 2007 , ACC'07, pp. 3488-3502, IEEE, 2007
[8] Hong Qiang Li, ” The common AFM mode”, http://www.chembio.uoguelph.ca/educmat/chm729/afm/details.htm, 1997
[9] Kiam Heong Ang and G. Chong and Yun Li, “PID control system analysis, design, and technology”, IEEE Transactions on Control Systems Technology, vol.13, no. 4, pp.559-576, 2005
[10] Huang, Norden E and Shen, Zheng and Long, Steven R and Wu, Manli C and Shih, Hsing H and Zheng, Quanan and Yen, Nai-Chyuan and Tung, Chi Chao and Liu, Henry H, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp.903-995, The Royal Society, 1998
[11] G. Rilling and P. Flandrin and P. Goncalves, “On empirical mode decomposition and its algorithms”, IEEE-EURASIP workshop on nonlinear signal and image processing, 2003
[12] Wikipedia, ” 希爾伯特轉換---From Wikipedia, the free encyclopedia” , https://zh.wikipedia.org/wiki/%E5%B8%8C%E7%88%BE%E4%BC%AF%E7%89%B9%E8%BD%89%E6%8F%9B, 2018
[13] Huang, Norden E and Shen, Samuel S P, “Hilbert-Huang Transform and Its Applications”, WORLD SCIENTIFIC, 2005
[14] Ghafooripour, Amin and Aghakoochak, A.A. and Kiamehr, H., “An overview of system identification methods and applications part ii: theory, type of tested structures, history and prospective of system identification”, 11 2000
[15] David Wang,” Basics of Capacitive Sensing and Applications”, 12 2014
[16] 盧奕, “利用石英音叉於位移量測之研究”, 國立交通大學, 2011
[17] 陳佳慧, “以溶膠-凝膠法製備鋯鈦酸鉛薄膜作為生物感測器之研究”, 國立交通大學, 2005
[18] M. G. Ruppert and M. W. Fairbairn and S. O. R. Moheimani, “Multi-mode resonant control of a microcantilever for Atomic Force Microscopy”, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.77-82, 2013
[19] M. Yang and C. Li and G. Gu and L. Zhu, “Improving scanning speed of the AFMs with inversion-based feedforward control”, 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp.1-6, 2014
[20] Schitter,G. and Menold,P. and Knapp,H. F. and Allgöwer,F. and Stemmer,A., “High performance feedback for fast scanning atomic force microscopes”, Review of Scientific Instruments, vol.72, no.8, pp.3320-3327, 2001
[21] R. J. E. Merry and M. J. C. Ronde and R. van de Molengraft and K. R. Koops and M. Steinbuch, “Directional Repetitive Control of a Metrological AFM”, IEEE Transactions on Control Systems Technology, vol.19, no.6, pp.1662-1629, 2011
[22] Aliofkhazraei, Mahmood and Ali, Nasar, “AFM Applications in Micro/Nanostructured Coatings”, Comprehensive Materials Processing, vol.7, pp.191-241, 05 2014
[23] W. Zhang and P. Hao and Y. Liu and Z. Dong, “Directional Repetitive Control of a Metrological AFM”, 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 3442-3445, 2012
[24] Cerreta, Andrea , “Frequency Modulation Atomic Force Microscopy on Biomolecules: Force Measurements and High Resolution Images of DNA”, 01 2013
[25] J. Wu and Y. Lin and Y. Lo and W. Liu and K. Chang and D. Liu and L. Fu , “Effective Tilting Angles for a Dual Probes AFM System to Achieve High-Precision Scanning”, IEEE/ASME Transactions on Mechatronics , vol.21, no. 5, pp. 2512-2521, 2016
[26] N. Goncalves-Rosa and C. Tavares and V. Geraldes and C. Nunes-da-Silva and I. Rocha, “Application of a modified Hilbert-Huang Transform to autonomic evaluation in metabolic syndrome”, 2015 IEEE 4th Portuguese Meeting on Bioengineering, pp. 1-5, 2015
[27] Q. Wan and L. Zhao, “A Novel Fault Section Location Method for Small Current Grounding Fault Based on Hilbert-Huang Transform with Wavelet Packet Transform Preprocessing”, 2018 11th International Conference on Intelligent Computation Technology and Automation, pp. 365-370, 2018
[28] B. Lenka, “Time-frequency analysis of non-stationary electrocardiogram signals using Hilbert-Huang Transform”, 2015 International Conference on Communications and Signal Processing, pp. 1156-1159, 2015
[29] Dong, Ruili and Tan, Yonghong and Yangqiu, Xie , “Identification of Micropositioning Stage with Piezoelectric Actuators ”, Mechanical Systems and Signal Processing, vol.75, 01 2016
[30] Lee, Ming-Wei and Huang, Hsiao-Ping and Jeng, Jyh-Cheng , “Identification and Controller Design for Nonlinear Processes Using Relay Feedback” Journal of Chemical Engineering of Japan - J CHEM ENG JPN, vol.37, pp. 1194-1206, 10 2004
[31] Ghafooripour, Amin and Aghakoochak, A.A. and Kiamehr, H. , “An overview of system identification methods and applications part ii: theory, type of tested structures, history and prospective of system identification, 11 2000
[32] X. SHEN and J. ZHAO and Q. XIAO and Q. ZHANG and Y. PENG, “Identification of Asymmetric Bouc-Wen Model Based on Ga Algorithm for a Piezo-Actuated Stage, 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications , pp.1-6, 2019
[33] M. Y. Lin and C S. Chang and W. L. Li,” An Introduction to the Principle of Atomic Force Microscope (I).”, 科儀新知, vol.27, no.2, pp.46-57, 1993
[34] M. Tsukadaa and N. Sasakia and R. Yamuraa and N. Satoa and K. Abeb,” Features of cantilever motion in dynamic-mode AFM”, Surface Science, vol.401, pp.355-363, 1998
[35] 維基百科, ” 凡得瓦力---維基百科自由的百科全書” , https://zh.wikipedia.org/wiki/%E8%8C%83%E5%BE%B7%E5%8D%8E%E5%8A%9B , 2017
[36] Jacob N. Israelachvili,” Intermolecular and Surface Forces”, Academic Press, 2011
[37] B. Voigtländer, “Amplitude Modulation (AM) Mode in Dynamic Atomic Force Microscopy”, Scanning Probe Microscopy, NanoScience and Technology , Springer-Verlag Berlin Heidelberg, pp.187-204, 2015
[38] Asylum Research, “MFP-3D Atomic Force Microscope Controller – Fully Digital, Fast, Low Noise for High Performance”, 2004
[39] L. Y. Pao and J. A. Butterworth and D. Y. Abramovitch, “Combined feedforward/feedback control of atomic force microscopes”, Proc.Amer. Ctrl. Conf., 2007
[40] T. Ando and T. Kodera and E. Takai and D. Maruyama and K. Saito and A. Toda, “A high-speed atomic force microscope for studying biological macromolecules”, PNAS, vol.98, pp. 12468-12472, 2001
[41] G. Schitter and K. J. A ̊stro ̈m and B. DeMartini and G. E. Fantner and K. Turner and P. J. Thurner and P. K. Hansma, “Design and modeling of a high- speed scanner for atomic force microscopy”, Proc. Amer. Ctrl.Conf., pp. 502--507, 2006
[42] Veeco Instruments, “The New NanoScope V Controller: New Power and Capabilites for Multimode V, Dimension V,NanoMan VS and PicoForce”, http://www.veeco.com, 2006
[43] Huabin Wang and Michelle L. Gee,” AFM lateral force calibration for an integrated probe using a calibration grating”, IUltramicroscopy, vol.136, pp.193-200, 2014
[44] 何秉憲, “光學尺連續製造系統之設計研究”, 臺灣科技大學, 2017
[45] MicroSense, “Understanding Capacitive Position Sensors”, 2011
[46] PiezoDrive, “PDm200 Miniature High Voltage Amplifier”, 2019

無法下載圖示 全文公開日期 2025/08/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE