簡易檢索 / 詳目顯示

研究生: 賴承郁
Cheng-Yu Lai
論文名稱: 鈣鈦礦奈米線載子擴散影像研究
Imaging the carrier diffusion on the perovskite nanowire
指導教授: 蔡孟霖
Meng-Lin Tsai
陳祺
Chi Chen
口試委員: 蔡孟霖
Meng-Lin Tsai
陳祺
Chi Chen
連德軒
Der-Hsien Lien
簡靖航
Ching-Hang Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 鈣鈦礦奈米線共軛焦顯微鏡載子擴散載子遷移率
外文關鍵詞: perovskite, nanowire, confocal microscope, carrier diffusion, carrier mobility
相關次數: 點閱:232下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以熱注射的方法自行合成高品質,截面寬約為50-200nm,長度大於10-20m的鈣鈦礦奈米線,以研究光激發後載子的擴散行為。鈣鈦礦奈米線是一維半導體材料,在室溫下由於環境熱能高過激子的束縛能(binding energy),所以在光激發過後無法形成激子,所以在共軛焦顯微鏡(confocal microscope)系統上經457 nm雷射激發後,奈米線當中會產生自由載子並進行擴散,本研究量測並解析載子之擴散長度(carrier diffusion length)及估算其載子遷移率(carrier mobility)。
    本實驗透過電子倍增電荷偶合相機 (electron multiplying charge couple device, EMCCD),分析載子擴散之螢光影像長度,與雷射光點強度輪廓圖的差異,確認兩者之間差異高達三倍以上,故採用光學量測方法直接測量擴散長度是可行的。並運用掃描式電子顯微鏡(scanning electron microscope, SEM)及原子力顯微鏡(atomic force microscope, AFM),討論奈米線尺寸與載子擴散長度的關係,因而發現當奈米線寬度低於100 nm時,其載子擴散長度與奈米線本身寬度(截面積)有關,當寬度大於100 nm之後,奈米線寬度對載子擴散長度的影響則較為不明顯。
    另外也討論基板環境的影響,使用本實驗室特有的14 nm厚度之大面積連續金膜作為基板,觀察當奈米線同時橫跨金膜及石英基板時,環境介電常數改變的影響;並且在金膜上會有鏡像電荷及基板屏蔽的效應出現,使得光致發光光譜於金膜上,較石英基板上有著3 nm的放光波長紅移;當奈米線於金膜上時,載子擴散長度也較石英基板上有著300-600 nm的減少。
    最後,再藉著量測出的奈米線載子生命週期(carrier lifetime),估算鈣鈦礦奈米線的載子擴散常數(diffusion coefficient)及載子遷移率,並與其他半導體材料比較,檢視此實驗方法有沒有可能為半導體產業,提供一項光學檢測技術,其可被視為非破壞性且不須額外製程的電性檢測方法。


    In this experiment, high-quality perovskite nanowires are synthesized by hot injection. The width of the cross-section ranges from 50 to 200 nm while the length grows more than 10-20 m. Perovskite nanowires are one-dimensional semiconductors. Due to the low binding energy of exciton compared to the thermal energy of room temperature, only free carriers could be generated after photoexcitation. In this experiment, we measured and estimated carrier diffusion length and carrier mobility of perovskite nanowires.
    Experimentally, the difference between the carrier diffusion length and the laser fluorescence intensity profile was analyzed by an electron-multiplying charge-coupled device (EMCCD) camera. The difference between the two was confirmed to be more than three times, making the optical measurement method feasible. After confirming the size of nanowires by a scanning electron microscope (SEM) and an atomic force microscope (AFM), the relationship between the size of the nanowire and the carrier diffusion length was further explored. The carrier diffusion length was found to be affected by the width (cross-section) of the nanowire itself when the width was below 100 nm. The effect of the nanowire width on the carrier diffusion length is less significant when the width is larger than 100 nm.
    Furthermore, the effect of the external environment (substrate) was also investigated by spreading nanowires across the boundary between gold film and quartz substrate. The difference in environmental dielectric constant, mirror charges, and substrate shielding all affect the diffusion of carriers, especially on the gold film. We found that the carrier diffusion length is reduced by 300-600 nm when the nanowires are on the gold film compared to the quartz substrate.
    Finally, the carrier lifetime of the nanowires was measured to estimate the carrier diffusion coefficient and carrier mobility of nanowires. We also compare our data with other semiconductor nanomaterials. The methodology can be considered a non-destructive and non-contact detection method for the semiconductor industry

    目錄 摘要……………………………………………………………………………..v Abstract………………………………………………………………………….vi 1. 緒論…………………………………………………………………………vii 1.1 鈣鈦礦奈米線的基本性質…………………………………………..1 1.2 載子的擴散機制介紹………………………………………………..4 1.3 研究動機……………………………………………………………..7 2. 文獻回顧……………………………………………………………………8 2.1 鈣鈦礦奈米線的合成方法…………………………………………..8 2.2 鈣鈦礦奈米線的形貌鑑定…………………………………………..10 2.3 鈣鈦礦奈米線光學性質解析………………………………………..12 2.4 載子的擴散機制……………………………………………………..14 3. 實驗方法與儀器……………………………………………………………16 3.1 化學合成方法與流程………………………………………………..16 3.1.1 實驗藥品……………………………………………………...16 3.1.2 實驗儀器……………………………………………………...16 3.1.3 樣品製備流程………………………………………………...18 3.2 材料分析……………………………………………………………..21 3.3 量測系統介紹………………………………………………………..23 3.3.1 共軛焦顯微鏡 Confocal Microscope………………………..23 3.3.2 原子力顯微鏡 Atomic Force Microscope…………………..24 3.3.3 掃描式電子顯微鏡 Scanning Electron Microscope………...25 3.4 實驗數據擬合分析方法…………………………………………….26 4. 結果與討論………………………………………………………………...32 4.1 鈣鈦礦奈米線樣品分析 …………………………………………...32 4.1.1 所得之樣品及光學顯微鏡下形貌 …………………………..32 4.1.2 奈米線之掃描式電子顯微鏡下形貌 ………………………...33 4.2 鈣鈦礦奈米線之光譜量測…………………………………………....34 4.2.1 鈣鈦礦奈米線之吸收光譜……………………………………...34 4.2.2 鈣鈦礦奈米線之光致發光光譜………………………………...35 4.3 鈣鈦礦奈米線載子影像解析…………………………………………...37 4.3.1 光學與奈米線載子擴散長度量測方法於石英上之適用性……37 4.3.2 鈣鈦礦奈米線載子擴散影像分析…………………………....39 4.4 鈣鈦礦奈米線載子擴散長度與其尺寸關係討論……………….......41 4.4.1 奈米線載子擴散長度與其尺寸關係討論……………….......41 4.4.2 以SEM分析奈米線尺寸及載子擴散長度之討論………….46 4.5 金膜對鈣鈦礦奈米線載子擴散及光譜影響………………………..50 4.5.1 光學與奈米線載子擴散長度量測方法於金膜上適用性…...50 4.5.2 基板造成的光致發光光譜變化……………………………...52 4.5.3 載子擴散長度於金膜與石英的比較………………………...54 4.6 擴散長度和載子遷移率估算…………………………………………...58 5. 結論……………………………………………………………………………..62 6. 參考資料………………………………………………………………………...63

    Reference
    [1] Shamsi, J., Urban, A. S., Imran, M., De Trizio, L., & Manna, L. (2019). Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chemical reviews, 119(5), 3296-3348.
    [2] Kovalenko, M. V., Protesescu, L., & Bodnarchuk, M. I. (2017). Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358(6364), 745-750..
    [3] Zhou, Y., & Zhao, Y. (2019). Chemical stability and instability of inorganic halide perovskites. Energy & environmental science, 12(5), 1495-1511.
    [4] Zhao, Y. Q., Ma, Q. R., Liu, B., Yu, Z. L., Yang, J., & Cai, M. Q. (2018). Layer-dependent transport and optoelectronic property in two-dimensional perovskite:(PEA) 2 PbI 4. Nanoscale, 10(18), 8677-8688.
    [5] Zhang, D., Yu, Y., Bekenstein, Y., Wong, A. B., Alivisatos, A. P., & Yang, P. (2016). Ultrathin colloidal cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 138(40), 13155-13158.
    [6] Tian, W., Zhao, C., Leng, J., Cui, R., & Jin, S. (2015). Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. Journal of the American Chemical Society, 137(39), 12458-12461.
    [7] Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398.
    [8] Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., ... & Zhu, X. Y. (2015). Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature materials, 14(6), 636-642.
    [9] Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., ... & Polavarapu, L. (2021). State of the art and prospects for halide perovskite nanocrystals. ACS nano, 15(7), 10775-10981.
    [10] Zhang, D., Eaton, S. W., Yu, Y., Dou, L., & Yang, P. (2015). Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 137(29), 9230-9233.
    [11] Imran, M., Di Stasio, F., Dang, Z., Canale, C., Khan, A. H., Shamsi, J., ... & Manna, L. (2016). Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chemistry of Materials, 28(18), 6450-6454.
    [12] Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., ... & Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters, 15(6), 3692-3696.
    [13] Akkerman, Q. A., D’Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M., & Manna, L. (2015). Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 137(32), 10276-10281.
    [14] Zhitomirsky, D., Voznyy, O., Hoogland, S., & Sargent, E. H. (2013). Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS nano, 7(6), 5282-5290.
    [15] Hodes, G., & Kamat, P. V. (2015). Understanding the implication of carrier diffusion length in photovoltaic cells. The journal of physical chemistry letters, 6(20), 4090-4092.
    [16] Johnston, M. B., & Herz, L. M. (2016). Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Accounts of chemical research, 49(1), 146-154.
    [17] Semnani, D. (2017). Geometrical characterization of electrospun nanofibers. In Electrospun Nanofibers (pp. 151-180). Woodhead Publishing.
    [18] Whiteside, P. J., Chininis, J. A., & Hunt, H. K. (2016). Techniques and challenges for characterizing metal thin films with applications in photonics. Coatings, 6(3), 35.
    [19] Raja, A., Chaves, A., Yu, J., Arefe, G., Hill, H. M., Rigosi, A. F., ... & Chernikov, A. (2017). Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nature communications, 8(1), 1-7.
    [20] Cox, G., & Sheppard, C. J. (2004). Practical limits of resolution in confocal and non‐linear microscopy. Microscopy research and technique, 63(1), 18-22.
    [21] Soudi, A., Dhakal, P., & Gu, Y. (2010). Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires. Applied Physics Letters, 96(25), 253115.
    [22] Gao, M., Liu, H., Yu, S., Louisia, S., Zhang, Y., Nenon, D. P., ... & Yang, P. (2020). Scaling laws of exciton recombination kinetics in low dimensional halide perovskite nanostructures. Journal of the American Chemical Society, 142(19), 8871-8879.
    [23] Kang, Y., & Han, S. (2018). Intrinsic carrier mobility of cesium lead halide perovskites. Physical Review Applied, 10(4), 044013.
    [24] Cordovilla Leon, D. F., Li, Z., Jang, S. W., Cheng, C. H., & Deotare, P. B. (2018). Exciton transport in strained monolayer WSe2. Applied Physics Letters, 113(25), 252101.
    [25] Cadiz, F., Robert, C., Courtade, E., Manca, M., Martinelli, L., Taniguchi, T., ... & Marie, X. (2018). Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Applied Physics Letters, 112(15), 152106.
    [26] Kulig, M., Zipfel, J., Nagler, P., Blanter, S., Schüller, C., Korn, T., ... & Chernikov, A. (2018). Exciton diffusion and halo effects in monolayer semiconductors. Physical review letters, 120(20), 207401.
    [27] Yuan, L., & Huang, L. (2015). Exciton dynamics and annihilation in WS 2 2D semiconductors. Nanoscale, 7(16), 7402-7408.
    [28] Tamor, M. A., & Wolfe, J. P. (1980). Drift and diffusion of free excitons in Si. Physical Review Letters, 44(25), 1703.
    [29] Deng, S., Shi, E., Yuan, L., Jin, L., Dou, L., & Huang, L. (2020). Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature communications, 11(1), 1-8.
    [30] Penzo, E., Loiudice, A., Barnard, E. S., Borys, N. J., Jurow, M. J., Lorenzon, M., ... & Weber-Bargioni, A. (2020). Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS nano, 14(6), 6999-7007.
    [31] Oksenberg, E., Fai, C., Scheblykin, I. G., Joselevich, E., Unger, E. L., Unold, T., ... & Merdasa, A. (2021). Deconvoluting Energy Transport Mechanisms in Metal Halide Perovskites Using CsPbBr3 Nanowires as a Model System. Advanced functional materials, 31(22), 2010704.

    QR CODE