簡易檢索 / 詳目顯示

研究生: 侯韋銘
Wei-Ming Hou
論文名稱: 溶膠凝膠法合成鈦酸鑭在紫外光下分解染料水溶液之研究
Preparation of La2Ti2O7 by Polymerized Complex Method and Decomposition of Dye in Aqueous Solution by UV/La2Ti2O7 Process
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
張祖恩
Juu-En Chang
張慶源
Ching-Yuan Chang
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 115
中文關鍵詞: 鈣鈦礦La2Ti2O7聚合錯合物法光觸媒催化摻雜
外文關鍵詞: Perovskite, La2Ti2O7, Polymerized complex method, Photocatalysis, Doping
相關次數: 點閱:318下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • La2Ti2O7為一種層狀的perovskite結構,並且在紫外光的照射下可產生電子-電洞對的分離,進而形成光催化對污染物進行降解,鈣鈦礦觸媒的活性來源主要是因為其特殊的晶相以及層狀的觸媒結構;而以製備方法而言,利用聚合錯合物法(PC method)所燒結的觸媒相較於固相反應法具有大的表面積以及較均一的形態並且可以降低觸媒燒結溫度。在本研究中分別利用TG-DTA、XRD、SEM、BET、UV-vis DRS以及Zeta potnential來對觸媒的特性進行分析與討論。
    研究中以UV/La2Ti2O7程序針對反應性染料-RR22進行光催化降解,探討觸媒燒結溫度以及溶液pH值對於觸媒活性的影響;在光催化程序中可明顯得知相較於固相反應法,聚合錯合物法所製備而得的觸媒對於降解污染物具有較高的能力,主要是由於聚合錯合物法的製備方式可以讓金屬離子達到分子層次的均勻混合,並且使其觸媒表面的帶電性質對於溶液pH值相較靈敏。藉由表面電位的影響可以發現以UV/La2Ti2O7程序中,在酸性溶液下反應機制是以光觸媒催化為主,然而在鹼性溶液下污染物的降解則是由光解反應所貢獻。
    過渡金屬-鉻離子、鐵離子在聚合錯合物法的製備過程中摻雜至La2Ti2O7的晶格中,雖然摻雜了鉻或鐵離子的La2Ti2O7觸媒可以將其能隙從3.62eV分別降低至2.23與2.87eV,但是摻雜鐵離子的觸媒卻在光氧化的程序中沒有助益,然而摻雜鉻離子的觸媒則可以在較長波長的紫外光照射下使其光催化速率增加三倍之多。


    Relative to La2Ti2O7 containing perovskite structure prepared by solid state reaction (SSR) method, the sample prepared by polymerized complex (PC) method, one kind of sol-gel method, would exhibit higher surface areas, reduce the crystalline temperature, increase the adsorbed sites and have more uniform morphology. The characterizations of sample were estimated by TG-DTA, XRD, SEM, BET, UV-vis DRS and Zeta potential.
    The photocatalytic activity of La2Ti2O7 perovskite was examined by decomposing a model pollutant, Relative Red 22 (RR22). The effects of calcined temperature and solution pH were estimated for the photocatalytic activity of La2Ti2O7. The photocatalytic decomposition rate of RR22 by sample prepared by PC method was better than SSR method. In addition to that PC method could provide uniform mixing in molecular level during the preparing process, the sample prepared by PC method had more sensitive to solution pH in surface charge. Because of surface charge of photocatalyst, the reactive mechanism was photocatalysis in acidic solution. However, there were only few pollutants adsorbed on the surface of catalysts in alkaline solution. Hence, the reactive mechanism was photolysis by means of excited hydroxyl radical in the irradiation of UV light.
    Chromium (Cr) and Ferrum (Fe) ions were incorporated into the lattice of La2Ti2O7 in the process of PC method. Although both Cr-doped and Fe-doped La2Ti2O7 could decrease the band-gap energy from 3.62 eV to 2.23 and 2.87 eV respectively. The Fe-doped La2Ti2O7 had on enhancement in the photooxidization process. However, the incorporation of Cr ions into La2Ti2O7 lattice had almost three times in promotion for decomposing RR22 in the higher wavelength irradiation.

    Table of Contents Page Acknowledgment…..…………………………………..………………………………………. I English Abstract………………………………………...……………………………….. II Chinese Abstract………………………………………………………………………...III Table of Contents…………………………………………………………………………IV List of Figures…………………………………………………………………………….VII List of Tables……………………………………………………………………….….........IX List of Symbols………………………………………………………………………………X Chapter 1 Introduction………………………………………………………………………………1 1.1 Background………………………………………………………………….1 1.2 Objectives and scope………………………………………………………..2 2 Literature Review…………………………………………………………………….4 2.1 Introduction of Photocatatst………………………………………...4 2.2 Perovskite Structure and Characteristics…………………………….6 2.2.1 Basic Information of Perovskite Structure………………………………..6 2.2.2 Characteristics and Purposes of Perovskite Structures…………………..9 2.2.3 Principles and Reaction Mechanisms……………………………………10 2.3 Preparative Methods of Perovskite Structures………………………………17 2.3.1 Solid State Reaction……………………………………………………..17 2.3.2 Sol-Gel Method………......…………….............……………………….18 2.3.3 Polymerized Complex Method……………………………………………..22 2.3.4 Co-precipitation……………………………………………………………..25 2.3.5 Hydrothermal Synthesis……………..……………………………………..25 2.4 Application of the Catalyst with Perovskite Structure…………………26 2.5 Effect of Metal-doped Catalyst……………………………………………….28 3 Experimental Procedures and Equipments……………………………………..31 3.1 Instruments……………………………………………………………………31 3.2 Chemicals………………………………..……………………………………..32 3.3 Apparatus………………………………………………………………….36 3.4 Experimental Procedures…………………………………………………...42 3.4.1 Experimental Framework………………………………………............42 3.4.2 Catalyst Preparation……………………………………………….……43 3.4.3 Background Experiments………………………………………………..45 3.4.4 Experimental Condition of Characterization Analysis………………….46 3.4.5 Decomposition of RR22 in UV/metal-La2Ti2O7 (metal = Cr, Fe) Photocatalytic Process……………………………………………………47 4 Results and Discussion………………………………………………………………....48 4.1 Background Experiments…………………………………………………..48 4.2 Characterization Analysis…………………………………..……………….56 4.2.1 Thermogravimetry-Differential Thermal Analysis………………………..56 4.2.2 X-ray Diffraction Analysis………….……..………………………………58 4.2.3 Scanning Electron Microscopy (SEM) Analysis…………………………..63 4.2.4 UV-vis Diffuse Reflectance Spectra Analysis….........................……….....74 4.2.5 Zeta Potential Analysis……………….……..………………………………83 4.3 Degradation of RR22 by Photocatalytic Reaction Process……………….85 4.3.1 Effect of Preparation Method (PC method and SSR method)………….85 4.3.2 Effect of Calcined Temperature of Catalyst……………………………..88 4.3.3 Effect of Solution pH……………….….………………………………......93 4.3.4 Effect of Metal-doped (metal = Cr, Fe) …………………………………101 5 Conclusions and Recommendations……………………………………………….107 Reference………………………………………………………………………………110 Vita…..…………………………………………………………………………………….115 List of figures Figure 2.1 Schematic diagram of a series of photocatalytic processes along the time axis. The time interval of excitation by photons in this figure is assumed to be that for an experimental condition of 1 μW.cm-2 incident UV intensity and 1000 ppmv initial 2-propanol concentration………………………………………………………………………...…..5 2.2 Structure of ideal cubic ABO3 (a)A-type cell and (b) B-type cell……………………….8 2.3 Schematic drawing of perovskite La2Ti2O7……………………………………………..12 2.4 Band-structure model of Ln2Ti2O7 (Ln = La, Pr, Nd)…………………………………...13 2.5 The early stages of the Pechini method: conceptual representation of the condensation between a metal cation, citric acid, and a polyol……………………………………….23 2.6 Redox reactions in perovskite-type structures under conservation of the structure…….27 2.7 Schematic band energy diagram of lead or bismuth substituted perovskite-related oxides…………………………………………………………………………………...29 3.1 UV-vis absorption spectra of Reactive Red 22 solution………………………….……..34 3.2 UV/vis spectrophotometer calibration line for RR22…………………………………...35 3.3 Experimental Apparatus………………………………………………………………....37 3.4 Relationship between Relative Irradiance and Wavelength of 254nm Lamp…………...38 3.5 Spectral distribution of light emitting by UV lamp (Sparkie, FL10W/BLB)…………...39 3.6 Calibration line of light intensity for 254 nm UV lamp…………………………...…….40 3.7 Calibration line of light intensity for 365 nm UV lamp………………………...……….41 4.1 Degradation of RR22 by photolysis process in the irradiation of 254 nm with different initial concentration of RR22, 10 and 50 ppm………………………………………………...50 4.2 Degradation of RR22 by photolysis process in the irradiation of 365 nm with 50 ppm initial concentration of RR22…………………………………………………………...51 4.3 Decomposition of RR22 by photolysis process (done by senior)……………………….52 4.4 Adsorption equilibrium of RR22 at neutral solution using La2Ti2O7: 1.5 g La2Ti2O7 and dye concentration 10 mg/L………………………………………………………..........53 4.5 Adsorption equilibrium of RR22 at different solution pH using La2Ti2O7: 1.5 g La2Ti2O7 and dye concentration 10 mg/L…………………………………………..…………….54 4.6 The ratio of adsorbed RR22 of the catalyst prepared by PC method to SSR (PC method: 900℃ for 2 h; SSR:1100℃ for 15 h)…………………………………………………...55 4.7 TG-DTA curves of the La:Ti = 1:1 composition precursor in static air with a heating rate of 10℃/min……………………………………………………………………………..57 4.8 X-ray diffraction patterns of La2Ti2O7 samples prepared by the polymerized complex method following a two-hour calcinations run in static air at different temperatures….60 4.9 The XRD patterns of La2Ti2O7 sample calcined at 900℃ and JCPDS (81-1066) of La2Ti2O7………………………………………………………………………………...61 4.10 X-ray diffraction patterns of La2Ti2O7 and metal-doped La2Ti2O7 (metal = Cr, Fe) samples prepared by the polymerized complex method at 900℃…………………….62 4.11 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 500℃ for 2 h………………………………………………………………………………….64 4.12 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 600℃ for 2 h………………………………………………………………………………….65 4.13 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 700℃ for 2 h………………………………………………………………………………….66 4.14 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 800℃ for 2 h………………………………………………………………………………….67 4.15 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 900℃ for 2 h………………………………………………………………………………….68 4.16 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 1000℃ for 2 h………………………………………………………………………………….69 4.17 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 1100℃ for 2 h………………………………………………………………………………….70 4.18 The SEM photographs for La2Ti2O7 crystal prepared by PC method at 1200℃ for 2 h………………………………………………………………………………….71 4.19 The SEM photographs for Cr-La2Ti2O7 crystal prepared by PC method at 900℃ for 2 h………………………………………………………………………………….72 4.20 The SEM photographs for Fe-La2Ti2O7 crystal prepared by PC method at 900℃ for 2 h………………………………………………………………………………….73 4.21 The UV-vis DRS patterns of La2Ti2O7 prepared by PC method at 900℃ for 2 h and Solid-state reaction method at 1100℃ for 15 h……………………………………….77 4.22 The first derivatives of UV-vis absorption of photocatalysts: samples prepared by PC method and solid-state reaction, respectively………………………………………....78 4.23 Dependence of the UV-vis diffuse reflectance spectra and calcined temperature on the samples prepared by PC method at different temperature…………………………….79 4.24 The first derivatives of UV-vis absorption of photocatalysts: calcined at different temperature, 500-1200℃……………………………………………………………...80 4.25 UV-vis diffuse reflectance spectra of La2Ti2O7, T-La2Ti2O7 (T = Cr, Fe) and TiO2.......81 4.26 pHzpc of the catalysts prepared by Polymerized complex method and solid-state reaction measured by zeta meter………………………………………………………………..84 4.27 Photocatalytic activity of La2Ti2O7 prepared by PC method and SSR method………..87 4.28 Effect of calcined temperature on photocatalytic degradation of RR22: dye concentration 10 mg/L, pH 6.9 and 1.5 g La2Ti2O7…………………………………...90 4.29 Effect of calcined temperature of catalyst on photocatalytic degradation of RR22: dye concentration 10 mg/L, pH 6.9 and 1.5 g La2Ti2O7…………………………………...92 4.30 The effect of pH on the photocatalytic activity of La2Ti2O7 crystals. The pH was controlled at 3, 5, 9 and 11…………………………………………………………….96 4.31 Effect of solution pH value on photocatalytic degradation of RR22: dye concentration 50 mg/L and 1.5 g La2Ti2O7…………………………………………………………...98 4.32 The comparison of photocatalysis with photolysis: 254 nm UV light………………....99 4.33 The conjectured mechanism of photocatalysis in the irradiation of 254 nm UV light at different pH…………………………………………………………………………..100 4.34 Photocatalytic degradation of RR22 using Cr, Fe-La2Ti2O7 and pure La2Ti2O7 calcined at 900℃ for 2 h in the irradiation of 254 nm UV light………………………………103 4.35 Photocatalytic degradation of RR22 using Cr, Fe-La2Ti2O7 and pure La2Ti2O7 calcined at 900℃ for 2 h in the irradiation of 365 nm UV light………………………………104 4.36 Schematic band structure of metal-doped La2Ti2O7 (metal = Cr, Fe) and its mechanism of decomposition of RR22…………………………………………………………...105 List of tables Table 2.1 Properties of perovskite-phase materials………………………………………………....9 2.1 Previous literatures about photocatalyst with perovskite structure……………………...15 3.1 Characteristics of Reactive Red 22……………………………………………………...33 4.1 Characterization analysis of catalysts prepared by PC method………………………....82 4.2 The influence of calcined temperature on the activity of La2Ti2O7……………………..91 4.3 The effect of pH on the apparent reaction rate constants of La2Ti2O7…………………..97 4.4 Photocatalytic rate constant of different metal-doped photocatalysts………………....106

    References
    Abe, R., Higashi, M., Sayama, K., Abe, Y. and Sugihara, H., “Photocatalytic Activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for Water Splitting into H2 and O2” J. Phys. Chem. B, Vol. 110, pp. 2219-2226 (2006)
    Bhatkhande, D.S., Pangarkar, V.G. and Beenackers, A.A., “Photocatalytic Degradation for Environmental Applications – A Review,” J. Chem. Technol. Biotechnol., Vol. 77, pp. 102-116 (2001)
    Calzada, M. L., Sirela, R., Carmona, F. and Jiménez, B., “Investigations of a Diol Based Sol-gel Process for the Preparation of Lead Titanate Materials,” J. Am. Ceram. Soc., Vol. 77, pp.1802-1808 (1995)
    Camp, S. R. and Sturrock, P. E., “The Identification of the Derivatives of C.I. Reactive Blue 19 in Textile Wastewater,” Water Res., Vol. 24, pp. 1275-1278 (1990)
    Cao, Y., Zhang, X., Yang, W., Du, H., Bai, Y., Li, T. and Yao, J., “A Bicomponent TiO2/SnO2 Particulate Film for Photocatalysis,” Chem. Mater., Vol. 12, pp. 3445-3448 (2000)
    Chandler, C.D., Roger, C. and Hampden-Smith, M.H., “Chemical Aspects of Solution Routes to Perovskite-Phase Mixed-Metal Oxides from Metal-Organic Precursors,” Chem. Rev., Vol. 93, pp. 1205-1241 (1993)
    Chiang, Y.M., Birnie III, D.P. and Kingery, W.D., “Physical Ceramics,” J. Wiley, pp. 38-41 (1976).
    Cogan, S. F., Nguyen, N. M., Perrotti, S. J. and Rauh, R. D., “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., Vol. 66, pp.1333-1337 (1989)
    Cushing, B.L., Kolesnichenko, V.L. and O’Connor, C.J., “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles,” Chem. Rev., Vol. 104, No. 9, pp. 3893-3946 (2004)
    Fei, D.Q., Hudaya, T. and Adesina, A.A., “Visible-Light Activated Titania Perovskite Photocatalysts: Characterisation and Initial Activity Studies,” Catal. Commun., Vol. 6, pp. 253-258 (2005)
    Hasen, R.M., “Perovskites: Scientific American,” Vol. 258, pp. 74 (1988)
    Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95, pp. 69-96 (1995)
    Hur, J., Williams, M.A. and Schlautman, M.A., “Evaluating Spectroscopic and Chromatographic Techniques to Resolve Dissolved Organic Matter via End Member Mixing Analusis,” Chemosphere, Vol. 63, pp. 387-402 (2006)
    Hwang, D.W., Kim, H.G., Kim, J., Cha, K.Y., Kim, Y.G. and Lee, J.S., “Photocatalytic Water Splitting over Highly Donor-Doped (110) Layered Perovskites,” J. Catal., Vol. 109, pp. 40-48 (2000)
    Hwang, D.W., Lee, L.S., Li, W. and Oh, S.H., “Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd),” J. Phys. Chem., B, Vol. 107, pp. 4963-4970 (2003)
    Hwang, D.W., Kim, H.G., Jang, J.S., Bae, S.W., Ji, S.M. and Lee, J.S., “Photocatalytic Decomposition of Water-Methanol Solution over Metal-Doped Layered Perovskites under Visible Light Irradiation,” Catal. Today, Vol. 93–95 pp. 845–850 (2004)
    Hwang, D.W., Kim, H.G., Lee, J.S., Kim, J., Li, W. and Oh, S.H., “Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm),” J. Phys. Chem. B, Vol. 109, pp. 1093-2102 (2005)
    Kakihana, M., Okubo, T., Arima, M., Uchiyama, O., Yashima, M., Yoshimura, M. and Nakamura, Y., “Polymerized Complex Synthesis of Perovskite Lead Titanate at Reduced Temperatures: Possible Formation of Heterometallic (Pb, Ti)-Citric Acid Complex,” Chem. Mater., Vol. 9, pp. 451-456 (1997)
    Kako, T., Zou, Z. and Ye, J., “Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation,” Res. Chem. Intermed., Vol. 31, No. 4–6, pp. 359–364 (2005)
    Kao, C. F. and Yang, C. L., “Preparation and Electrical Properties of Barium Titanate Film by Hydrothermal Method,” J. Eur. Ceram. Soc., Vol. 19, pp. 1365-1368 (1999)
    Kawai, T. and Sakata, T., “Photocatalytic Hydrogen Production from Liquid Methanol and Water,” J. Chem. Soc., Chem. Commun., Issue 15, pp. 694-695 (1980)
    Kim, H.G., Hwang, D.W., Kim, J., Kim, Y.G. and Lee, J.S., “Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting,” Chem. Commun., pp. 1077–1078 (1999)
    Kim, H.G., Hwang, D.W., Bae, S.W., Jung, J.H. and Lee, J.S., “Photocatalytic Water Splitting over La2Ti2O7 Synthesized by the Polymerizable Complex Method,” Catal. Lett., Vol. 91, pp. 193-198 (2003)
    Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., “Introduction to ceramics,” Wiley, J., N. Y. (1976)
    Milanova, M.M., Kakihana, M., Arima, M., Yashima, M. and Yoshimura, M., “A Simple Solution Route to The Synthesis of Pure La2Ti2O7 and Nd2Ti2O7 at 700-800℃ by Polymerized Complex Method,” J. Alloys Compd., Vol. 242, pp. 6-10 (1996)
    Ohko, Y., Hashimoto, K. and Fujishima, A., “Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films,” J. Phys. Chem. A, Vol. 101, pp. 8057-8062 (1997)
    Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. and Matsumura, M., “Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light,” Appl. Catal., A, Vol. 265, pp. 115-121 (2004)
    Ohno, T., Tsubota, T., Nakamura, Y. and Sayama, K., “Preparation of S, C Cation-Codoped SrTiO3 and Its Photocatalytic Activity under Visible Light,” Appl. Catal., A, Vol. 288, pp. 74-79 (2005)
    Okubo, T. and Kakihana, M., “Low Temperature Synthesis of Y3NbO7 by Polymerizable Complex Method: Utilization of a Methanol-Citric Acid Solution of NbCl5 as a Novle Niobium Precursor,” J. Alloys Compd., Vol. 256, pp. 151-154 (1997)
    Ojeda, C.B., and Rojas, F.S., “Recent Developments in Derivative Ultraviolet/Visible Absorption Spectrophotometry,” Anal. Chim. Acta, Vol. 518, pp. 1-24 (2004)
    Pechini, M. P., U.S. Patent 3,330,697, July 11, 1967.
    Peña, M.A. and Fierro, J.L., “Chemical Structures and Performance of Pervoskite Oxides,” Chem. Rev., Vol. 101, pp. 1981-2017 (2001)
    Roselin, L.S., Raharaheswari, G.R., Selvin, R., Sadasivam, V., Sivasankar, B. and Rengarah, K., “Sunlight/ZnO-Mediated Photocatalytic Degradation of Reactive Red 22 Using Thin Film Flat Bed Flow Photoreactor,” Solar Energy, Vol. 73, pp. 281-285 (2002)
    Schramm, K. W., Hirsch, M., Twele, R., and Hutzinger, O., “A New Method for Extraction of C.I. Reactive Red 4 and Its Derivatives from Water,” Water Res., Vol. 22, pp. 1043-1045 (1988)
    Schwarz, J.A., Contescu, C. and Contescu. A., “Methods for Preparation of Catalytic Materials,” Chem. Rev., Vol. 95, pp. 477-510 (1995)
    Subramanian, V., Roeder, R.K. and Wolf, E.E., “Synthesis and UV-Visible-Light Photoactivity of Noble-Metal–SrTiO3 Composites,” Ind. Eng. Chem. Res., Vol. 45, pp. 2187-2193 (2006)
    Tang, W.Z. and An, H., “UV/TiO2 Photocatalytic Oxidation of Commercial Dyes in Aqueous Solutions,” Chemosphere, Vol. 31, No. 9, pp. 4157-4170 (1995)
    Voorhoeve, R.J.H., Johnson, D.W., Jr., Remeika, J.P. and Gallagher, P.K., “Perovskite Oxides: Materials Science in Catalysis,” Science, Vol. 195, pp. 827-833 (1977)
    Wang, J., Yin, S., Zhang, Q., Saito, F. and Sato, T., “Synthesis and Photocatalytic Activity of Fluorine Doped SrTiO3,” J. Mater. Sci., Vol. 39, Issue 2, pp. 715-717 (2004)
    Weidendaff, A., “Preparation and Application of Nanostructured Perovskite Phase,” Adv. Eng. Mater., Vol. 6, No. 9, pp. 709-714 (2004)
    Xu, H., Gao,H. and Guo, J., “Preparation and Characterizations of Tetragonal Barium Titanate Powders by Hydrothermal Method,” J. Eur. Ceram.Soc., Vol. 22, pp. 1163-1170 (2002).
    Yang, Y., Sun, Y. and Jiang, Y., “Structure and Photocatalytic Property of Perovskite and Perovskite-Related Compounds,” Mater. Chem. Phys., Vol. 96, pp. 234–239 (2006)
    Yao, W.F., Xu, X.H., Wang, H., Zhou, H.T., Yang, X.N., Zhang, Y., Shang, S.X. and Huang, B.B., “Photocatalytic Property of Perovskite Bismuth Titanate,” Appl. Phys. B., Vol. 52, pp. 109-116 (2004)
    Yin, J., Zou, Z. and Ye, J., “Sol-Gel Synthesis and Characterization of the Photocatalyst BaCo1/3Nb2/3O3,” J. Mater. Sci., Vol. 41, pp. 1131-1135 (2006)
    Zhan, H., Chen, K. and Tian, H., “Photocatalytic Degradation of Acid Azo Dyes in Aqueous TiO2 Suspension II. The Effect of pH Values,” Dyes and Pigments, Vol. 37, No. 3, pp. 241-247 (1998)
    Zhao, Z., Zhang, Y., Yang, J., Li, H., Song, W. and Zhao, X., “Low-Temperature Synthesis of La2Ti2O7 Nanocrystal by Metallorganic Decomposition Method,” J. Ceram. Soc. Jpn., Vol. 113, pp. 67-70 (2005)
    Zielinska, B. and Morawski, A.W., “TiO2 Photocatalysts Promoted by Alkali Metals,” Appl. Catal., B, Vol. 55, pp. 221-226 (2005)
    陳俊翔,“二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響”,國立臺灣科技大學化學工程研究所碩士論文 (1998)
    黃玉婷,“鑭系波洛斯凱特奈米微粉之製備及其特性”,國立成功大學化學工程研究所碩士論文 (1999)
    曾焜煜,“以紫外線/光觸媒程序處理氣相丙酮反應行為之研究”,國立臺灣科技大學化學工程研究所碩士論文 (2003)
    戴煜暐,“光分解水產氫能之研究---含金鈦觸媒的製備、Fe2O3/Si元件設計與Fe2O3薄膜的製備”,國立臺灣大學化學工程研究所博士論文 (2005)
    楊明倫,“紫外線/光觸媒程式外加電位處理含有機染料水溶液之研究”,國立臺灣科技大學化學工程研究所碩士論文 (2006)
    王鈴祺,“以紫外線/La2Ti2O7程式分別處理含染料及異丙醇水溶液”,國立臺灣科技大學化學工程研究所碩士論文 (2006)

    無法下載圖示 全文公開日期 2012/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE