簡易檢索 / 詳目顯示

研究生: 湯志哲
Chih-che Tang
論文名稱: 多層層狀二硒化鉬奈米結構之電特性研究
Electronic Transport Properties in MoSe2 Multilayer Nanostructures
指導教授: 黃鶯聲
Ying-sheng Huang
陳瑞山
Ruei-san Chen
口試委員: 趙良君
Liang-chiun Chao
李奎毅
Kuei-yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 二硒化鉬多層層狀奈米結構電導率活化能電傳輸特性表面傳輸效應機械式剝離法
外文關鍵詞: MoSe2, multilayer nanostructure, conductivity, activation energy, electronic transport property, surface transport effect, mechanical exfoliation
相關次數: 點閱:364下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是探討具有奈米尺寸厚度的多層二硒化鉬(MoSe2)層狀半導體(Semiconductor)撕之電傳輸特性,實驗上利用機械剝離(Mechanical Exfoliation)的方式製作不同厚度的層狀半導體,並以原子力顯微鏡(AFM)定義其厚度,使用聚焦離子束雙束系統(FIB)沈積法製作兩點與四點式電極之奈米元件。藉由電流對電壓曲線量測,發現厚度較薄的奈米層狀結構的電導率(conductivity)高於同質塊材(bulk)約三個數量級,對於厚度在788奈米厚度之多層結構,其電導率範圍大約在340-540。在統計約33個不同厚度的樣品,顯示電導率並非常數並且似乎與樣品厚度成反比關係。推測此結果樣品電導值(conductance)可能受制於較高的表面電導率,暗示這類層狀半導體奈米結構存在不均勻的塊材導電率,可能存在較高的表面導電特性。進一步地,藉由變溫暗電導量測發現在奈米尺寸的厚度下,多層二硒化鉬半導體皆具有共通的弱半導體性與極小的載子活化能(約611 meV),此結果小於數十微米的塊材樣品(約34 meV),似乎也顯示奈米多層結構之主要載子來源不同於塊材本身,推測材料表面可能存在接近導電帶底端之表面態缺陷。


The electronic transport properties of the molybdenum diselenide (MoSe2) layer semiconductor with nanometer and micrometer –thicknesses have been investigated. It is found that the very thin multilayer MoSe2 with thickness at 788 nm exhibit much higher average conductivity at 440100 S/cm, which is over three orders of magnitude higher than the bulk counterparts. The statistic conductivity values showing significant thickness dependence are also observed. In addition, by the temperature-dependent measurement, the nanometer-thick MoSe2 layer crystals reveal weak semiconducting behavior with very low activation energies at 611 meV which are relatively lower than those of the micrometer-sized samples. The potential presence of the higher surface conductivity induced by the donor-like surface states is proposed to explain the highly conductive nature and its thickness dependence in this layer semiconductor.

中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 VI族層狀化合物相關介紹 1 1.2 研究動機與目的 2 第二章 樣品介紹 6 第三章 實驗方法 7 3.1 二硒化鉬層狀半導體之形貌、結構特性檢測及儀器介紹 7 3.1.1 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 7 3.1.2 拉曼散射儀(Raman scattering) 10 3.1.3 X 光繞射儀 (x-ray diffraction, XRD) 13 3.1.4 聚焦離子束雙束系統 (focused-ion-beam, FIB) 16 3.1.5 原子力顯微鏡 (atomic force microscope, AFM) 20 3.2 多層二硒化鉬層狀元件製作 25 3.2.1 元件基板製作 25 3.2.2 機械式剝離法撕薄樣品 26 3.2.3 層狀電極製作 29 第四章 結果與討論 31 4.1 二硒化鉬層狀半導體結構、樣貌分析 31 4.2 多層二硒化鉬層狀元件 36 4.3 多層二硒化鉬暗電導分析 40 4.3.1 利用AFM 定義多層二硒化鉬厚度 40 4.3.2 電導率之量測與計算 44 4.3.3 多層二硒化鉬電導率厚度相依之研究 50 4.3.4 表面電阻效應分析 53 4.3.5 活化能分析研究 60 第五章 結論 67 參考文獻 68

[1] H. Tributsch, “Hole Reactions from d-Energy Band of Layer Type Group VI Transition Matel Dichalcogenides: New Perspectives for Electrochemical Solar Energy Conversion,” J. Electrochem. Soc., vol. 125, pp. 1086-1093, 1978.
[2] A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem., vol. 100, pp. 13226 1996.
[3] P. Moriarty, “Nanostructured materials,” Rep. Prog. Phys., vol. 64, pp. 297–381, 2001.
[4] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys., vol. 42, pp. 173–262, 1993.
[5] X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev., vol. 37, pp. 912–920, 2008.
[6] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science, vol. 275, pp. 1102–1106, 1997.
[7] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010.
[8] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett. vol. 105, pp. 136805, 2010.
[9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnol., vol. 6, pp. 147-150, 2011.
[10] H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, “Integrated Circuits Based on Bilayer MoS2 Transistors,” Nano Lett., vol. 12, pp. 4674-4680, 2012.
[11] A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. van der Zant, and G. A. Steele, “Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor,” Nano Lett., vol. 12, pp. 3187-3192, 2012.
[12] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How Good Can Monolayer MoS2 Transistors Be?,” Nano Lett., vol. 11, pp. 3768-3773, 2011.
[13] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, “High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared”, Adv. Mater. Vol. 24, pp. 5832-5836 (2012).
[14] D. J. Late, B. Liu, H. S. S. Ramakrishna Matte, C. N. R. Rao, and V. P. Dravid, “Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates”, Adv. Funct. Mater. Vol. 22, pp. 1894-1905 (2012).
[15] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterisation”, IOP Publishing, Bristol (1994).
[16] 張冠英, “X 光能譜分析儀”.
[17] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall, New Jersey (2001).
[18] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development”, IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149 (2003).
[19] A. A. Tseng, “ Recent developments in micromilling using focused ion beam technology“, J. Micromech. Microeng., Vol. 14, pp. R15–R34 (2004).
[20] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, Vol. 1, pp. 924–939 (2005).
[21] F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy, Vol. 186, pages 84–87 (1997)
[22] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., Vol. 97, 211102(3pp) (2010).
[23] C. Y. Nam, D. Tham, and J. E. Fischer, “Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires”, Nano Lett., Vol. 5, pp. 2029–2033 (2005).
[24] P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. d. Vasconcellos, and R. Bratschitsch1, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2”, OPTICS EXPRESS, Vol. 21, pp. 4908 (2013).
[25] S. Y. Hu, C. H. Liang, K. K. Tiong, and Y. S. Huang, “Effect of Re dopant on the electrical and optical properties of MoSe2 single crystals”, Journal of Alloys and Compounds, Vol. 442, pp. 249–251 (2007)
[26] I. Mahboob, T. D. Veal, and C. F. McConville, “Intrinsic Electron Accumulation at Clean InN Surfaces”, PhysRevLett., Vol. 92, pp. 036804 (2004)

QR CODE