簡易檢索 / 詳目顯示

研究生: 宮非
Fei Kung
論文名稱: 探討石墨烯對散熱粉體塗料之增益性
Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 胡啟章
Chi-Chang Hu
楊銘乾
Ming-Chien Yang
顏怡文
Yee-Wen Yen
劉定宇
Ting-Yu Liu
邱智瑋
Chih-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: 石墨烯粉體塗料導熱率散熱熱輻射
外文關鍵詞: Graphene, powder coating, thermal conductivity, heat dissipation, thermal radiation
相關次數: 點閱:204下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨為探討石墨烯之添加對於高分子基粉末塗層之換熱效率的影響。在本研究中,將環氧聚脂樹脂與石墨烯共混以提高其導熱性和散熱效率,使得石墨烯塗層的導熱率增加了167倍,係石墨烯促成粉體塗料與鋁板間黏合性更好所導致。

    接著,我們利用石墨烯散熱粉體塗料進一步驗證其對散熱性能的影響後發現,在強制對流換熱情況下,石墨烯塗層的輻射熱傳係數佔總熱傳熱傳係數的16%,顯示並非如先前研究所云可以忽略不計;而在自然對流熱傳的情況下,以ANOVA分析得到輻射熱傳係數與表面塗層與否之關聯性最大,此與實測石墨烯塗層在熱通量為16W時,表面溫度比裸鋁板(124.1°C)低 27.4°C相符。另外,自然對流換熱的情況下,石墨烯塗層的輻射熱傳係數佔總熱傳係數的33%,其影響之效果更大。這些結果表明,不僅在塗層中添加石墨烯奈米顆粒可以提高鋁板的輻射率,從而改善散熱效果,且輻射換熱的技術將是散熱未來之趨勢。


    The main purpose of this research is to explore the influence of graphene addition on the heat transfer efficiency of polymer-based powder coatings. In this study, the epoxy polyester resin was blended with graphene to improve its thermal conductivity and heat dissipation efficiency, which increased the thermal conductivity of the graphene coating by 167 times. Graphene promotes the adhesion between the powder coating and the aluminum plate Better caused.

    Next, we used graphene heat-dissipating powder coatings to further verify its impact on heat dissipation performance and found that in the case of forced convection heat transfer, the radiant heat flux of the graphene coating accounted for 16% of the total heat transfer, indicating that it is not true about radiation can be ignored in the previous research; and in the case of natural convection heat transfer, the ANOVA analysis shows that the radiant heat transfer coefficient has the greatest factor with the surface coating, this is the same as the measured heat flux of the graphene coating of 16W. In addition, in the case of natural convection heat transfer, the radiation heat transfer flux of the graphene coating accounts for 33% of the total heat transfer flux, these results show that not only adding graphene nanoparticles to the coating can increase the emissivity of the aluminum plate, thereby improving the heat dissipation effect, but also that the radiation heat exchange technology will be the future trend of heat dissipation.

    中文摘要 I Abstract II 目 錄 IV 圖索引 V 表索引 VI 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 1 1-3 論文架構與研究流程 3 第二章 文獻探討 5 2-1 概論 5 2-2 熱傳理論分析 6 2-3 散熱塗料 8 第三章 研究方法 11 3-1 石墨烯與塗料之表徵 11 3-2 對流熱傳 17 3-3 模擬分析 20 第四章 結果與討論 22 4-1 導熱率與輻射率 22 4-2 強制對流與自然對流 25 4-3 對流熱傳係數 31 4-4 輻射熱傳係數 35 4-5 數據分析比較 36 第五章 結論與建議 45 參考資料 47

    1. S. Ganguli; A.K. Roy; D.P. Anderson. Improved thermal conductivity for chemically functionalized exfoliated graphene/epoxy composites. Carbon, 2008, 46, 806–817.
    2. I. Maasilta; A. Minnich. Heat under the microscope: Uncovering the microscopic processes that govern thermal transport. Phys. today, 2014, 67, 27–32.
    3. T. Matsumoto; T. Koitzumi; K. Kawakami; K. Okamoto; M. Tomita. Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements. Opt. Express, 2013, 21, 30964–30974.
    4. M. Lim; S.S. Lee; B.J. Lee. Near-field thermal radiation between graphene-covered doped silicon plates, Opt. Express, 2013, 21, 22173–22185.
    5. A.A. Balandin; S. Ghosh; W. Bao; I. Calizo; D. Teweldebrhan; F. Miao; C.N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.
    6. S. Subrina; K. Kotchetkov; A.A. Balandin. Graphene heat spreaders for thermal management of nanoelectronic circuits. IEEE Electron Device Lett., 2009, 30, 1281.
    7. A.Y. Serov; Z.Y. Ong; E. Pop. Effect of grain boundaries on thermal transport in graphene, Appl. Phys. Lett., 2013, 102, 033104.
    8. Z. Bo; Y. Yang; J.H. Chen; K.H. Yu; J.H. Yan; K.F. Cen. Plasma-enhanced chemical vapor deposition synthesis of vertically-oriented graphene nanosheets. Nanoscale, 2013, 5, 5180–5204.
    9. B. Li; Z. Li; B. Zheng; B. Sun; G.C. Dai. Properties and interfacial treatment effect on thermal conductivity and electrical insulativity of the polymer composites. J. E. China U. Sci. Tech. 2008, 34, 219–224.
    10. C. Li; G.Q. Shi. Three-dimensional graphene architectures. Nanoscale, 2012, 4 , 5549–5563.
    11. S. Nardeccia; D. Carriazo; M.L. Ferrer; M.C. Gutiérrez; F. del Monte. Three dimensional macroporous architects and aerogels built of carbon nanotubes and/or graphene synthesis and applications, Chem. Soc. Rev., 2013, 42, 794 –830.
    12. F. Marra; A. G. D'Aloia; A. Tamburrano; I. M. Ochando; G. De Bellis; G. Ellis; M. S. Sarto. Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets, Polymers, 2016, 8, 272.
    13. H. Chen; V.V. Ginzburg; J. Yang; Y. Yang; W. Liu; Y. Huang; L. Du; B. Chen. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85.
    14. X. Huang; P. Jiang; T. Tanaka. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 2011, 27, 8–16.
    15. Z. Han; A. Fina. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944.
    16. Y.F. Lin; C.T. Hsieh; R.J. Wai; Facile synthesis of graphene sheets for heat sink application, Solid State Sci. 2015, 43, 22-27.
    17. H. Im; J. Kim. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon, 2012, 50 (15), 5429-5440.
    18. Q. Li; Y. Guo; W. Li; S. Qiu; C. Zhu, X. Wei, et al., Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem. Mater, 2014, 26 (15) , 4459-4465.
    19. S.H. Song; K.H. Park; B.H. Kim; Y.W. Choi; G.H. Jun; D.J. Lee, et al., Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater, 2013, 25 (5), 732-737.
    20. A. Li; C. Zhang; Y.-F. Zhang. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. polymers, 2017, 9(9), 437.
    21. J. P. Holman. Heat Transfer, 10th ed., 2010, McGraw Hill Higher Education, Boston.

    QR CODE