簡易檢索 / 詳目顯示

研究生: 王冠雄
Kuan-Hsiung Wang
論文名稱: 太陽能電池導電鋁膠之性質研究
The Properties Study of the Conductive Aluminum Paste for Solar Cell
指導教授: 林舜天
Shun-Tian Lin
口試委員: 周賢鎧
Shyan-kay Jou
林寬泓
Kuan-Hong Lin
郭昭輝
Chao-Hui Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 導電膠鋁膠太陽能電池
外文關鍵詞: conductive paste, aluminum, paste, solar cells
相關次數: 點閱:166下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電膠(Electrode paste)主要用於太陽能電池半導體基材的兩端形
    成導電電極,用來將電流引導致外部的電流負載端(load),對於太陽能
    電池來說,導電膠的電子、物理、化學性質都有關鍵性的影響。導電
    電極對太陽能電池的轉換效率和電池的穩定性影響非常大。
    本論文主要目的,嘗試去配比不同的導電膠料組成,來達到高電
    性且低翹曲、彎曲缺陷的優良膠料。本論文依研究主題可區分為三大
    部分,第一部分為使用XRD 的粉末繞射儀來進行粉末繞射,利用XRD
    所收集到的圖譜,經電腦比對軟體和PDF 資料庫做搜尋[ 1 ],將粉末的
    成分及結晶相比對出來,確認實驗中所用的粉末顆粒成分無添加其他
    雜質。第二部分是進行各種高分子黏合劑和不同顆粒大小的鋁粉選擇
    進行調配,在多種嘗試後以環氧樹脂和松油醇調配最為適合,最後再
    添加助劑改善網印時的均勻性和流動性。第三部分將調配出之導電膠
    在不同溫度下進行燒結,得知最佳燒結溫度約在700℃~800℃之間,超
    過800℃時會觀察出大量的鋁氧化物形成,造成效率不佳。


    Electrode pastes are used in solar cells for the formation of electrodes
    at both ends of the semiconductor substrate. The physical, chemical, and
    electrochemical properties of electrode pastes have important influences on
    the conversion efficiency and stability of the solar cells. Generally speaking,
    the constituents of electrode paste include organic binder, solvent, metallic
    conductive powders, glass frit, and some minor additives, which are
    specially formulated to attain the properties of good electrical conductivity,
    wide sintering temperature, low warpage, low pollution, and low cost.
    The experiment of this proposed research is aim to optimize the
    composition of the electrode pastes to achieve enhanced electrical
    properties but reduced warpage, while still attaining a high FF. This
    research can be divided into three main parts. In the first par, powder
    diffractometer are used to get the dif- fraction Patterns of XRD powder.
    The following step is using the compare software and PDF database to find
    the specific composition of crystalline of XRD powder and making sure
    that the powder has no impurities added.
    The second part is mixing polymer binders with different particle size
    of aluminum powder, and the mixture of epoxy resin terpineol is regarded
    as the most appropriate one after several experiments. Additives are used to
    enhance the uniformity and mobility during screen print.
    III
    The third part is using the electrode pastes to sinter, and finding that
    the best temperature is around 700 to 800 Celsius degree. If the temperature
    were over 800 Celsius degree, aluminum oxide will be formed to lower
    efficiency of electrodes

    目錄 摘要 ............................................................................................................... I Abstract ....................................................................................................... II 致謝 .............................................................................................................IV 目錄 .............................................................................................................. V 圖目錄 ..................................................................................................... VIII 表目錄 .........................................................................................................XI 第一章 緒論 ................................................................................................. 1 1-1 前言 ................................................................................................. 1 第二章 理論基礎 ......................................................................................... 4 2-1 太陽能電池運作原理 ..................................................................... 4 2-1.1 太陽能電池之光電效應 ....................................................... 4 2-2 矽太陽能電池製作簡介 ....................................................................... 6 2-2.1 表面粗糙化處理(textured process) ....................................... 6 2-2.2 製作p-n 接面(junction) ........................................................ 7 2-2.3 製作抗反射層(antireflection layer) ...................................... 8 2-2.4 製作金屬電極(metal contact)................................................ 8 2-3 背面表面電場(BSF,back surface field) ........................................... 9 2-3.1 Al-BSF 形成 ......................................................................... 10 第三章 實驗方法 ....................................................................................... 16 3-1 實驗流程 ....................................................................................... 16 3-2 膠料材料及試片準備 ................................................................... 18 3-2.1 金屬導電性粒子 .................................................................. 18 3-2.2 陶瓷(玻璃)粉末 .................................................................. 20 3-2.3 高分子黏合劑 ..................................................................... 21 3-2.4 其他添加劑 ......................................................................... 22 3-3 實驗步驟 ........................................................................................ 23 3-3.1 粉末球磨及混練 ................................................................. 23 3-3.2 鋁膠之網印塗佈 .................................................................. 24 3-3.3 試片燒結 .............................................................................. 26 3-3.4 燒結時氣氛濃度 ................................................................. 27 3-3.5 膠料性質分析 ...................................................................... 28 3-4 實驗進行欲探討之性質 ............................................................... 28 第四章 結果與討論 ................................................................................... 29 4-1 粉末顆粒組成成份之分析 ........................................................... 29 4-1.1 鋁粉顆粒分析 ...................................................................... 29 4-1.2 Bi2O3 玻璃粉顆粒分析 ..................................................... 32 4-2 高分子黏合劑和不同顆粒大小的鋁粉選擇進行調配 ............... 34 4-2.1 高分子聚合物 ...................................................................... 34 4-2.2 溶劑添與高分子聚合物添加比例之探討.......................... 38 4-2.3 不同顆粒大小鋁粉配比的影響 .......................................... 40 4-2.4 鋁導電膠燒結後之橫截面圖 ............................................. 44 4-3 在鋁矽共晶點577℃以上,不同燒結溫度的比較 .................... 46 4-3.1 A 鋁膠於四種不同溫度燒結後之比較 ........................... 46 4-3.2 B 鋁膠於四種不同溫度燒結後之比較 ........................... 49 4-3.3 C 鋁膠於四種不同溫度燒結後之比較 ........................... 52 4-3.4 D 鋁膠於四種不同溫度燒結後之比較 ........................... 54 4-3.5 不同溫度燒結後的影響之SEM 橫截面圖 ....................... 56 4-3.6 分析鋁膠燒結後之顆粒數量及粒徑大小......................... 58 4-4 電性量測分析 ............................................................................... 60 4-5 鋁膠進行TGA(熱重分析儀)分析 ............................................... 60 第五章 結論 ............................................................................................... 63 第六章 參考文獻 ....................................................................................... 65

    [1] 鄭信民,林麗娟,”X 光繞射應用簡介”工業材料雜誌181 期,2002,100~108
    [2] http://www.riteksolar.com.tw/tc/p2-solar_modules.asp,錸德綠能
    [3] 蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起”,物理雙月刊, 2005,701
    [4] 曾俊凱,“氮化鎵銦系列材料應用於再生能源-太陽能電池&光電化學水解氫氣元件之研究”,國立成功大
    學光電科學與工程研究所大學電子工程研究所,碩士論文 ,2009
    [5] A. W. Blakers and M. A. Green, Appl. Phys. Lett., 48, 215 (1986).
    [6] H. Saha, S. K. Datta, K. Mukhopadhyay, S. Banerjee, and M. K.Mukherjee, IEEE
    Trans. Electron Devices, 39, 1100 (1992).
    [7] A. Rohatgi, V. Yelundur, J. Jeong, A. Ristow, M. Hilali, B. Damiani,
    V. Kumar, and P. K. Basu, Proceeding of the 11th International
    workshop on the Physics of Semiconductor Devices, Delhi, India, p.73 (2001).
    [8] U. Gangopadhyay, S. K. Dhungel, K. Kim, U. Manna, P. K. Basu, H.
    J. Kim, B. Karunagaran, K. S. Lee, J. S. Yoo, and J. Yi, Semicond.
    Sci. Technol., 20, 938 (2005).
    [9] D. Iencinella, E. Centurioni, R. Rizzoli, F. Zignani, “An optimized
    texturing process for silicon solar cell substrates using TMAH”,
    Volume 87, Issues 1–4, 725–732 (2005)
    [10] A. Kaminski, B. Vandelle, A. Fave, J. P. Boyeaux, L. Q. Nam, R.
    Monna, D. Sarti, A. Laugier, Sol. Energy Mater. Sol. Cells, 72, 373(2002).
    [11] S. Narasimha, A. Rohatgi, and A. W. Weeber, IEEE Trans. Electron
    Devices, 46, 1363 (1999).
    [12] J. G. Fossum, IEEE Trans. Electron Devices, ED-24, 322 (1977).
    [13] J. D. Alamo, J. Eguren, and A. Luque, Solid-State Electron., 24, 415(1981).
    [14] V. Meemongkolkiat, K. Nakayashiki, D. S. Kim, R. Kopecek, and A.
    Rohatgi, J. Electrochem. Soc., 153, G53 (2006)
    [15] http://www.pv-tech.org/product_reviews/ferro_offers_cost_saving_
    high_efficiency_rear_aluminum_conductor_pastes
    [16] C. Khadilkar, S. Kim , A. Shaikh, S. Sridharan, and T. Pham,
    “Characterization of Al Back Contact in a Silicon Solar Cell”,
    Presented at the International PVSEC-15, Shanghai, China, 2005
    [17] S. Kim, A. Shaikh, S. Sridharan, C. Khadilkar, T. Pham,
    “ALUMINUM PASTES FOR THIN WAFERS”, June, Paris,France, 2004
    [18] B. Sopori, V. R. Mehta, P. Rupnowski, D. Domine, M. Romero, H.
    Moutinho, B. To, R. Reedy, M. Al-Jassim, A Shaikh, N. Merchant,
    and C. Khadilkar, Proc. 22nd
    [19] Tsai-Fa Hsu, “Photoelectric cells organic active material
    containing”,(2010)
    [20] Konno Takuya, Kitagaki Takashi, Kojo Hiroki, “PASTE FOR
    SOLAR CELL ELECTRODE AND SOLAR CELL” (2010).
    [21] Yi Jang-Heui, Koo Hye-Young, Kim Jung-Hyun, Ko You-Na, Kang
    Yun-Chan, Lee Hye-Moon, Yun Jung-Yeul, “Fine size Pb-based
    glass frit with spherical shape as the inorganic binder of Al electrode
    for Si solar cells”,(2010).
    [22] Kyoung-Kook Hong, Sung-Bin Cho, Jae Sung You, “ Mechanism
    for the formation of Ag crystallites in the Ag thick-film contacts of
    crystalline Si solar cells”, Solar Energy Materials & Solar Cells 93
    (2009) 898–904
    [23] Haruzo Katoh, Takashi Watsuji, ” Aluminum Paste Composition
    and Solar Cell Element Using The Same”, Photoelectric cells
    contact, coating, or surface geometry, (2009)
    [24] Ken Kikuchi, Masakazu Ikeda, Takashi Ohkuma, Haruzo Katoh,
    Yoshiteru Miyazawa, Yutaka Ochi, Ken Matsumura,
    ” Paste composition and solar cell element.”,(2010)
    [25] Konno Takuya ,“ Electroconductive thick film composition,
    electrode, and solar cell formed therefrom” , E. I. du Pont de
    Nemours and Company, (2010)
    [26] Konno Takuya, Kitagaki Takashi, Kojo Hiroki, “ Paste For Solar
    Cell Electrode and Solar Cell”, E.I. du Pont de Nemours and Company, (2010)
    [27] Sung-Bin Cho, Kyoung-Kook Hong, Joo-Youl Huha, Hyun Jung
    Park, Ji-Weon Jeong, “ Role of the ambient oxygen on the silver
    thick-film contact formation for crystalline silicon solar cells” ,
    Current Applied Physics 10 (2010) S222–S225
    [28] Hsin-Chiao Fang, Chuan-Pu Liu, Hung-Shuo Chung, and Chin-Lin
    Huang “Effects of Fine Particle Content in Al Paste on Screen
    PrintedContact Formation and Solar Cell Performance” Journal of
    The Electrochemical Society, 157 (4),H455-H458,(2010)
    [29] 方信喬,”電子顯微鏡研究矽太陽能電池背電極之形成與微觀結構”,國立成功大學,博士論文,(2010)
    [30] B. Sopori, V. R. Mehta, P. Rupnowski, D. Domine, M. Romero, H.
    Moutinho, B. To, R. Reedy, M. Al-Jassim, A Shaikh, N. Merchant,
    and C. Khadilkar, Proc. 22nd European Photovoltaic Solar Energy
    Conference, Milan, p. 841 (2007).
    [31] Hye MoonLee n, Yong-JinKim, “Preparation of size-controlled fine
    Al particles for application to rear electrode of Si solar cells” , Solar
    Energy Materials & Solar Cells 95, (2011), 3352–3358
    [32] 高振源“鋁矽熔湯中矽含量對熱浸鍍310 不銹鋼高溫氧化之作用”,國立台灣科技大學,碩士論文

    無法下載圖示 全文公開日期 2017/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE