簡易檢索 / 詳目顯示

研究生: 林書弘
Shu-Hong Lin
論文名稱: 利用二進制粒子群最佳化進行向量式動態電壓降預測之特徵選取
Feature Selection for Vector-based Dynamic IR Drop Prediction Using Binary Particle Swarm Optimization
指導教授: 陳勇志
Yung-Chih Chen
口試委員: 方劭云
Shao-Yun Fang
劉一宇
Yi-Yu Liu
林政宏
Cheng-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 53
中文關鍵詞: 向量式動態電壓降預測機器學習特徵工程特徵選取二進制粒子群最佳化
外文關鍵詞: Vector-based Dynamic IR Drop Prediction, Machine Learning, Feature Engineering, Feature Selection, Particle Swarm Optimization
相關次數: 點閱:285下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於製程的進步讓電晶體的面積越來越小,使得晶片上的電晶體數量呈現指數趨勢的成長,導致在進行電壓降分析時需要消耗大量的時間和資源。而近年來,機器學習發展十分迅速,有許多機器學習的方法被應用在預測電壓降上。儘管先前的研究提出了許多各式各樣的特徵來反映電壓降的特性,但仍然還有進步的空間,而且先前的研究都沒考慮到實際電路封裝上的影響,在實際應用中,封裝產生的寄生電阻和電感都會使電壓降變得更加嚴重。此外,之前關於預測電壓降的研究並沒有探討到特徵選取這一塊,先前研究都使用適合各自實驗電路的特徵集,缺乏一個有效的方法去進行特徵選取。所以本研究除了開發了一些新穎的特徵外,我們還提出了一個特徵選取的方法,此方法適用於需要頻繁訓練以及預測的流程,像是工程改變命令 (ECO),本論文提出的特徵選取方法可以在原始的特徵集中降低72.3%的特徵數量,實驗結果也顯示,比起使用原本的特徵集,經過特徵選取後可以讓均方根誤差 (RMSE)和平均絕對誤差 (MAE)分別降低5.24%和5.49%,同時至少降低60%的訓練及預測時間。


Due to the advancement of semiconductor manufacturing processes, transistor sizes have become increasingly smaller, leading to exponential growth in the number of transistors on a chip. As a result, performing IR drop analysis requires a significant amount of time and resources. With the rapid development of machine learning, numerous machine learning methods have been applied to predict IR drop. Despite previous research proposing various features to reflect the characteristics of IR drop, there seems to be room for improvement. Moreover, previous studies did not consider the package effect in real circuits. In practical applications, the parasitic resistance and inductance in the package can exacerbate IR drop. Furthermore, prior research on IR drop prediction did not explore feature selection. They have primarily used feature sets tailored to their experimental designs, lacking an effective approach for feature selection. Therefore, in this thesis, we developed novel package features and introduced a feature selection method. This method is suitable for IR prediction flows that require frequent training and prediction, such as Engineering Change Order (ECO). It reduces the number of features used. Our experimental results show that using feature selection can lead to a decrease of 5.24% in root-mean-square error (RMSE) and 5.49% in mean absolute error (MAE) compared to using the original feature set. Moreover, it significantly reduces training and prediction time by at least 60%.

Abstract in Chinese. . . . . . . . . . . . . . . . . . . .iii Abstract in English. . . . . . . . . . . . . . . . . . . .iv Acknowledgements. . . . . . . . . . . . . . . . . . . . . v List of Figures. . . . . . . . . . . . . . . . . . . . . .viii List of Tables. . . . . . . . . . . . . . . . . . . . . . ix Chapter 1. Introduction. . . . . . . . . . . . . . . . . .1 Chapter 2. Preliminaries. . . . . . . . . . . . . . . . . 4 2.1 Feature used in prior works. . . . . . . . . . . . . .4 2.2 Binary Particle Swarm Optimization. . . . . . . . . . 9 Chapter 3. Proposed Method . . . . . . . . . . . . . . . .13 3.1 Basic feature extraction . . . . . . . . . . . . . . .13 3.2 Tile-based feature engineering methods . . . . . . . .19 3.3 Machine Learning . . . . . . . . . . . . . . . . . . .21 3.4 Feature selection flow . . . . . . . . . . . . . . . .23 Chapter 4. Experimental Results . . . . . . . . . . . . . 28 4.1 Environmental setup . . . . . . . . . . . . . . . . . 28 4.2 Final best feature set evaluation results . . . . . . 30 4.3 Experiments with tile count and Runtime Comparison. . 31 4.4 The effectiveness of package features . . . . . . . . 34 Chapter 5. Conclusion and Future Work . . . . . . . . . . 40 References . . . . . . . .. . . . . . . . . . . . . . . . 42

[1] S. Nithin, G. Shanmugam, and S. Chandrasekar, “Dynamic voltage (ir) drop analysis and design closure: Issues and challenges,” in 2010 11th International Symposium on Quality Electronic Design (ISQED), pp. 611–617, IEEE, 2010.
[2] Cadence, “Voltus IC Power Integrity Solution,” 2023.
[3] V. A. Chhabria, Y. Zhang, H. Ren, B. Keller, B. Khailany, and S. S. Sapatnekar, “MAVIREC: MLaided vectored IR-drop estimation and classification,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, feb 2021.
[4] Z. Xie, H. Ren, B. Khailany, Y. Sheng, S. Santosh, J. Hu, and Y. Chen, “PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network,” in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, jan 2020.
[5] Y.-C. Fang, H.-Y. Lin, M.-Y. Su, C.-M. Li, and E. J.-W. Fang, “Machine-learning-based dynamic IR drop prediction for ECO,” in Proceedings of the International Conference on Computer-Aided Design, ACM, nov 2018.
[6] S.-Y. Lin, Y.-C. Fang, Y.-C. Li, Y.-C. Liu, T.-S. Yang, S.-C. Lin, C.-M. Li, and E. J.-W. Fang, “IR drop prediction of ECO-revised circuits using machine learning,” in 2018 IEEE 36th VLSI Test Symposium (VTS), IEEE, apr 2018.
[7] H. Dhotre, S. EggersgluB, and R. Drechsler, “Identification of efficient clustering techniques for test power activity on the layout,” in 2017 IEEE 26th Asian Test Symposium (ATS), IEEE, nov 2017.
[8] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapatnekar, “Thermal and IR drop analysis using convolutional encoder-decoder networks,” in Proceedings of the 26th Asia and South Pacific Design Automation Conference, ACM, jan 2021.
[9] J.-X. Chen, S.-T. Liu, Y.-T. Wu, M.-T. Wu, C.-M. Li, N. Chang, Y.-S. Li, and W.-T. Chuang, “Vectorbased dynamic IR-drop prediction using machine learning,” in 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, jan 2022.
[10] U. Jana, G. Jain, V. Kaimal, N. Soman, A. Agarwal, and D. Agrawal, “A fast robust operation mode invariant frame-work for IR drop prediction,” in 2021 IEEE International Test Conference India (ITC India), IEEE, jul 2021.
[11] S. N. Mozaffari, B. Bhaskaran, K. Narayanun, A. Abdollahian, V. Pagalone, S. Sarangi, and J. E. Colburn, “An efficient supervised learning method to predict power supply noise during at-speed test,” in 2019 IEEE International Test Conference (ITC), IEEE, nov 2019.
[12] Y. Kwon, G. Jung, D. Hyun, and Y. Shin, “Dynamic IR drop prediction using image-to-image translation neural network,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, may 2021.
[13] S. Kundu, M. Prasad, S. Nishad, S. Nachireddy, and H. K, “MLIR: Machine learning based IR drop prediction on ECO revised design for faster convergence,” in 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID), IEEE, feb 2022.
[14] T. Chang, P. Cheng, H. Huang, R. Lee, and R. Lo, “Parasitic characteristics of BGA packages,” in Proceedings. 1998 IEEE Symposium on IC/Package Design Integration (Cat. No.98CB36211), IEEE Comput. Soc.
[15] J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, IEEE.
[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN'95 - International Conference on Neural Networks, IEEE.
[17] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), IEEE.
[18] T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, aug 2016.

無法下載圖示
全文公開日期 2029/08/15 (校外網路)
全文公開日期 2029/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE