簡易檢索 / 詳目顯示

研究生: 張碩峰
Shuo-Feng Chang
論文名稱: 具預測型控制器及容錯功能的矩陣轉換器永磁同步電動機控速系統研製
Implementation of a Matrix-Converter Based IPMSM Speed Control System with Predictive Controller and Fault-Tolerant Function
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
楊宗銘
Chung-Ming Young
楊士進
Shih-Chin Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 矩陣轉換器預測型控制器狀態估測器容錯控制
外文關鍵詞: matrix-converter, predictive controller, state estimator, fault-tolerant control
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討具容錯功能的矩陣轉換器永磁同步電動機控速系統的研製,並使用預測型控制器改善驅動系統的動態響應。此外,本文亦探討感測器故障時的偵測與容錯方法,在編碼器或電流偵測元件發生故障時,利用估測器的狀態估測值取代故障的回授資訊,提升系統的暫態響應、加載能力與可靠度。
    文中以數位信號處理器TMS320LF2407A作為控制核心,執行相關的狀態估測、控制及容錯方法以提升系統性能,實測結果說明本文所提方法的可行性與正確性。


    This thesis investigates a fault-tolerant matrix-converter interior permanent-magnet synchronous motor speed-control system, which uses a predictive controller to improve the dynamic responses. In addition, fault detection and fault-tolerant methods, including current sensors and encoder faults, are proposed to enhance the transient responses, load responses and reliability by replacing the faulty feedback states with the estimated states of the estimator when the sensors are faulty.
    A digital signal processor, TMS320LF2407A, is used as a control center to execute the state estimation, control and fault-tolerant methods, which are developed to increase the system performance. Experimental results can validate the correctness and feasibility of the proposed system.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 2 1.3 目的 6 1.4 大綱 6 第二章 永磁同步電動機 7 2.1 簡介 7 2.2 構造與特性 7 2.3 動態數學模型 10 第三章 矩陣轉換器 14 3.1 硬體架構 14 3.2 轉換器切換方法 16 3.2.1虛擬整流器的切換 19 3.4.2虛擬變頻器的切換 20 第四章 容錯方法 22 4.1 簡介 22 4.2滑動模式估測器原理 22 4.3滑動模式估測器設計 25 4.4速度估測器 32 4.5感測器故障偵測 33 4.5.1編碼器的自適應臨界值 34 4.5.2電流偵測元件的自適應臨界值 37 第五章 預測型控制器 42 5.1 簡介 42 5.2基本原理 42 5.3 控制器設計 44 第六章 系統研製 51 6.1 簡介 51 6.2 硬體配置 55 6.2.1矩陣轉換器電路架構 55 6.2.2開關驅動電路 56 6.2.3電壓零點與電流偵測電路 57 6.2.4緩衝電路 58 6.2.5數位信號處理器 59 6.2.6複雜可程式化邏輯元件 60 6.3 軟體程式設計 61 6.3.1主程式 61 6.3.2中斷副程式 62 6.3.3複雜可程式化邏輯元件程式設計 66 第七章 實測結果 67 7.1 簡介 67 7.2 實測結果 69 第八章 結論與未來研究方向 96 參考文獻 97

    [1] G. Schoonhoven, and M. N. Uddin, ”MTPA- and FW-Based Robust Nonlinear Speed Control of IPMSM Drive Using Lyapunov Stability Criterion,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4365-4374, Sept./Oct. 2016.
    [2] K. Matsuse, and D. Matsuhashi, “New technical trends on adjustable speed AC motor drives,” Chinese J. Electr. Eng., vol. 3, no. 1, pp. 1-9, Nov. 2017.
    [3] D. C. Lee and Y. S. Kim, “Control of single-phase-to-three-phase AC/DC/AC PWM converters for induction motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 797-804, Apr. 2007.
    [4] M. Siami, D. A. Khaburi, M. Rivera, and J. Rodríguez, ”An Experimental Evaluation of Predictive Current Control and Predictive Torque Control for a PMSM Fed by a Matrix Converter,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8459-8471, Nov. 2017.
    [5] H. M. Nguyen, H. H. Lee, and T. W. Chun, “Input Power Factor Compensation Algorithms Using a New Direct-SVM Method for Matrix Converter,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 232-243, Mar. 2010.
    [6] H. Wang, M. Su, Y. Sun, J. Yang, G. Zhang, W. Gui, and J. Feng, “Two-Stage Matrix Converter Based on Third-Harmonic Injection Technique,” IEEE Trans. Ind. Electron., vol. 31, no. 1, pp. 533-547, Jan. 2016.
    [7] E. Yamamoto, H. Hara, T. Uchino, M. Kawaji, T. J. Kume, J. K. Kang, and H. Krug, “Development of MCs and its Applications in Industry,” IEEE Ind. Electron. Magazine, vol. 5, no. 1, pp. 4-12, Apr. 2011.
    [8] I. Sato, J. Itoh, H. Ohguchi, A. Odaka, and H. Mine, ”An Improvement Method of Matrix Converter Drives Under Input Voltage Disturbances,” IEEE Trans. Ind. Electron., vol. 22, no. 1, pp. 132-138, Jan. 2007.
    [9] W. C. Wang, T. H. Liu, and Y. Syaifudin, ”Model Predictive Controller for a Micro-PMSM-Based Five-Finger Control System,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3666-3676, June 2016.
    [10] J. L. Shi, T. H. Liu, and S. H. Yang, ”Nonlinear-controller design for an interior-permanent-magnet synchronous motor including field-weakening operation,” IET Electric Power Appl., vol. 1, no. 1, pp. 119-126, Jan. 2007.

    [11] K. Rothenhagen, and F. Wilhelm Fuchs, ”Current Sensor Fault Detection, Isolation, and Reconfiguration for Doubly Fed Induction Generators,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4239-4245, Oct. 2009.
    [12] J. Xia, Y. Guo, B. Dai, and X. Zhang, ”Sensor Fault Diagnosis and System Reconfiguration Approach for an Electric Traction PWM Rectifier Based on Sliding Mode Observer,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 4768-4778, Sept./Oct. 2017.
    [13] L. Gyugyi and B. R. Pelly, Static Power Frequency Chargers:Theory, Performance, and Application, Wiley, 1976.
    [14] A. Alesina, and M.G.B. Venturini, ”Analysis and design of optimum-amplitude nine-switch direct AC-AC converters,” IEEE Trans. Power Electron., vol. 4, no. 1, pp. 101-112, Jan. 1989.
    [15] L. Huber, and D. Borojevic, ”Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1234-1246, Nov./Dec. 1995.
    [16] Y. S. Lai, and J. C. Lin, ”New hybrid fuzzy controller for direct torque control induction motor drives,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1211-1219, Sept. 2003.
    [17] S. Lin, Y. Cai, B. Yang, and W. Zhang, ”Electrical line-shafting control for motor speed synchronisation using sliding mode controller and disturbance observer,” IET Control Theory & Appl., vol. 11, no. 2, pp. 205-212, Jan. 2017.
    [18] S. K. Kim, J. S. Lee, and K. B. Lee, ”Self-Tuning Adaptive Speed Controller for Permanent Magnet Synchronous Motor,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1493-1506, Feb. 2017.
    [19] M. Y. Wei, and T. H. Liu, ”A High-Performance Sensorless Position Control System of a Synchronous Reluctance Motor Using Dual Current-Slope Estimating Technique,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3411-3426, Sept. 2012.
    [20] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, ”Back EMF Sensorless-Control Algorithm for High-Dynamic Performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, June 2010.
    [21] G. Wang, L. Yang, G. Zhang, X. Zhang, and D. Xu, ”Comparative Investigation of Pseudorandom High-Frequency Signal Injection Schemes for Sensorless IPMSM Drives,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2123-2132, Mar. 2017.
    [22] J. Li, M. Sumner, H. Zhang, and J. A. Padilla, ”Fault detection for PMSM motor drive systems by monitoring inverter input currents,” CES Trans. Elect. Mach. and Syst., vol. 1, no. 2, pp. 174-179, July 2017.
    [23] J. H. Choi, S. Kim, D. S. Yoo, and K. H. Kim, ”A Diagnostic Method of Simultaneous Open-Switch Faults in Inverter-Fed Linear Induction Motor Drive for Reliability Enhancement,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4065-4077, July 2015.
    [24] A. Akrad, M. Hilairet, and D. Diallo, ”Design of a Fault-Tolerant Controller Based on Observers for a PMSM Drive,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416-1427, Apr. 2011.
    [25] W. Wang, M. Cheng, B. Zhang, Y. Zhu, and S. Ding, ”A Fault-Tolerant Permanent-Magnet Traction Module for Subway Applications,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1646-1658, Apr. 2014.
    [26] M. Manohar, and S. Das, ”Current Sensor Fault-Tolerant Control for Direct Torque Control of Induction Motor Drive Using Flux-Linkage Observer,” IEEE Trans. Ind. Informat., vol. 13, no. 6, pp. 2824-2833, Dec. 2017.
    [27] W. Ahmad, S. A. Khan, and J. M. Kim, ”A Hybrid Prognostics Technique for Rolling Element Bearings Using Adaptive Predictive Models,” IEEE Trans. Ind. Informat., vol. 65, no. 2, pp. 1577-1584, Feb. 2018.
    [28] J. Cai, and Z. Deng, ”Unbalanced Phase Inductance Adaptable Rotor Position Sensorless Scheme for Switched Reluctance Motor,” IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4285-4292, May 2018.
    [29] S. Weerasinghe, U. K. Madawala, and D. J. Thrimawithana, ”A Matrix Converter-Based Bidirectional Contactless Grid Interface,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1755-1766, Mar. 2017.
    [30] M. Hamouda, H. F. Blanchette, and K. A. Haddad, ”Unity Power Factor Operation of Indirect Matrix Converter Tied to Unbalanced Grid,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1095-1107, Feb. 2016.
    [31] N. Taib, B. Metidji, T. Rekioua, and B. Francois, ”Novel Low-Cost Self-Powered Supply Solution of Bidirectional Switch Gate Driver for Matrix Converters,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 211-219, Jan. 2012.
    [32] P. D. Ziogas, S. I. Khan, and M. H. Rashid, ”Analysis and Design of Forced Commutated Cycloconverter Structures with Improved Transfer Characteristics,” IEEE Trans. Power Electron., vol. IE-33, no. 3, pp. 271-280, Aug. 1986.
    [33] J. R. Aros, R. P. Guinez, R. C. Dobson, R. B. Gimenez, and J. Clare, ”Indirect matrix converter modulation strategies for open-end winding induction machine,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 395-401, May 2014.
    [34] R. Baranwal, K. Basu, and N. Mohan, ”Carrier-Based Implementation of SVPWM for Dual Two-Level VSI and Dual Matrix Converter With Zero Common-Mode Voltage,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1471-1487, Mar. 2015.
    [35] A. Akrad, M. Hilairet, and D. Diallo, ”Design of a Fault-Tolerant Controller Based on Observers for a PMSM Drive,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416-1427, Apr. 2011.
    [36] V. F. M. B. Melo, C. B. Jacobina, and N. Rocha, ”Fault tolerance performance of dual-inverter-based six-phase drive system under single-, two-, and three-phase open-circuit fault operation,” IET Power Electron., vol. 11, no. 1, pp. 212-220, Jan. 2018.
    [37] L. Zhang, Y. Fan, R. D. Lorenz, R. Cui, C. Li, and M. Cheng, ”Design and Analysis of a New Five-Phase Brushless Hybrid-Excitation Fault-Tolerant Motor for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 3428-3437, July/Aug. 2017.
    [38] K. D. Young, ”Controller Design for a Manipulator Using Theory of Variable Structure Systems,” IEEE Trans. Syst., Man, and Cyber., vol. 8, no. 2, pp. 101-109, Feb. 1978.
    [39] G. S. d. Silva, R. P. Vieira, and C. Rech, ”Discrete-Time Sliding-Mode Observer for Capacitor Voltage Control in Modular Multilevel Converters,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 876-886, Jan. 2018.
    [40] S. Chi, Z. Zhang, and L. Xu, ”Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for Washing Machine Applications,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 582-590, Mar./Apr. 2009.
    [41] H. Kim, J. Son, and J. Lee, ”A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, Sept. 2011.
    [42] Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, ”New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 710-719, Feb. 2013.
    [43] S. K. Kommuri, M. Defoort, H. R. Karimi, and K. C. Veluvolu, ”A Robust Observer-Based Sensor Fault-Tolerant Control for PMSM in Electric Vehicles,” IEEE Trans. Ind. Electron, vol. 63, no. 12, pp. 7671-7681, Dec. 2016.
    [44] T. Gonzalez, J. A. Moreno, and L. Fridman, ”Variable Gain Super-Twisting Sliding Mode Control,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2100-2105, Aug. 2012.
    [45] J. K. Seok, J. K. Lee, and D. C. Lee, ”Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 399-405, Apr. 2006.
    [46] F. R. Salmasi, ”A Self-Healing Induction Motor Drive With Model Free Sensor Tampering and Sensor Fault Detection, Isolation, and Compensation,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6105-6115, Aug. 2017.
    [47] R.Isermann, Fault-Diagnosis Applications, Springer, 2011.
    [48] K. Rothenhagen, and F. W. Fuchs, ”Current Sensor Fault Detection, Isolation, and Reconfiguration for Doubly Fed Induction Generators,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4239-4245, Oct. 2009.
    [49] I. Jlassi, J. O. Estima, S. K. E. Khil, N. M. Bellaaj, and A. J. M. Cardoso, ”A Robust Observer-Based Method for IGBTs and Current Sensors Fault Diagnosis in Voltage-Source Inverters of PMSM Drives,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2894-2905, May/June 2017.
    [50] H. Yassami, A. Rabiee, A. Jalilvand, and F. Bayat, ”Model predictive control scheme for coordinated voltage control of power systems at the presence of volatile wind power generation,” IET Gener., Trans. & Distri., vol. 12, no. 8, pp. 1922-1928, Apr. 2018.
    [51] J. M. Maciejowski,Predictive Control with Constraints,Pearson Education, 2002.
    [52] P. W. Wheeler, J. C. Clare, and L. Empringham, “A vector controlled MCT matrix converter induction motor drive with minimized commutation times and enhanced waveform quality,” IEEE Ind. Appl. Conf., vol.1, pp.466-742,Oct. 2002.

    無法下載圖示 全文公開日期 2023/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE