簡易檢索 / 詳目顯示

研究生: 簡劭宇
Shao-Yu Chien
論文名稱: 以雙輪倒單擺為移動平台之雙臂機器人
Dual-Arm Robot with Two-Wheeled Inverted Pendulum Mobile Platform
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 劉孟昆
Meng-Kun Liu
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145
中文關鍵詞: ROSMoveIt軌跡規劃FSMCWheel-Leg
外文關鍵詞: ROS, MoveIt, Trajectory Planning, FSMC, Wheel-Leg
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究整合雙臂機器人與雙輪倒單擺系統為一平台,規劃為居家時將雙臂裝上作為服務型機器人,外出時可將雙臂卸下使用雙輪倒單擺進行代步移動,同時將此平台作為以輪腿混合(wheel-leg)為移動平台之人型機器人之初步設計,並將整體平台分為高效能運算電腦、個人電腦、嵌入式電腦、雙輪倒單擺系統、機械手臂系統,達到分散式運算及妥善運用各個設備之效能。
高效能運算電腦用於以 MoveIt 計算機械手臂反動學,以及機械手臂圖形化互動介面,並透過 TCP/IP 將機械手臂各關節角度傳給嵌入式電腦,再於嵌入式電腦內透過 UART 將機械手臂各關節角度傳給機械手臂系統,進行關節座標下點到點軌跡規劃,並使用 FSMC 進行運動控制。嵌入式電腦用於和雙輪倒單擺系統、機械手臂系統透過 UART 溝通,使兩者可透過嵌入式電腦來進行管理。最後以ROS實現 TCP/IP,使高效能運算電腦、個人電腦、嵌入式電腦形成物聯網架構,為未來之智慧化系統進行先期佈局。


In this thesis, a dual-arm robot and a two-wheeled inverted pendulum are integrated to construct a platform that serves as a service robot at home. If the dual-arm robot is disassembled from the two-wheeled inverted pendulum, it can be served as a mobile platform for outdoor movement. It also can be a preliminary layout for a humanoid robot with a wheel-leg mobile platform. The overall platform is divided into high-performance computer, personal computer, embedded computer, two-wheeled inverted pendulum system, and robot arm system to achieve the performance of distributed computing and proper function of each device.
The high-performance computer is used to install MoveIt for calculating the inverse kinematics and used as the graphical interactive interface of the robot arm. It sends the joint angles of the robot arm to the embedded computer through TCP/IP, and then transmits the joint angles of the robot arm to the robot arm control system through UART in the embedded computer for point-to-point trajectory planning. FSMC algorithm is employed for joint motion control. The embedded computer is used to execute communication between the two-wheeled inverted pendulum system and the robot arm control system through UART. Finally, the TCP/IP is implemented with ROS, so that high-performance computing computers, personal computers, and embedded computers form an IoT(Internet of Things). This is use for construct structure for future intelligent system layout.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 論文架構 10 第二章 系統架構 11 2.1 系統簡介 11 2.2 雙輪倒單擺系統 18 2.2.1 系統架構 18 2.2.2 動力單元 20 2.2.3 控制單元 22 2.3 機械手臂系統 32 2.3.1 系統架構 32 2.3.2 動力單元 34 2.3.3 控制單元 37 第三章 機械手臂運動學分析 41 3.1 MoveIt 42 3.2 URDF 46 第四章 運動控制及策略 47 4.1 PID控制器 48 4.2 模糊滑動控制(FSMC) 49 4.3 雙輪倒單擺系統控制策略 53 4.3.1 互補濾波器(Complementary Filter) 53 4.3.2 馬達空載速度估測 54 4.3.3 空載平衡 61 4.3.4 載人平衡及移動 62 4.4 機械手臂系統控制策略 64 4.4.1 梯形速度規劃 64 4.4.2 S-curve速度規劃 68 4.5 機器人系統控制策略 73 4.5.1 平衡 73 4.5.2 直線移動及定位 73 第五章 實驗結果討論 75 5.1 雙輪倒單擺系統 76 5.1.1 空載平衡實驗 76 5.1.2 載人實驗 82 5.2 機械手臂系統 86 5.2.1 單軸運動控制實驗 86 5.2.2 多軸同動運動控制實驗 97 5.3 機器人系統 105 5.3.1 平衡實驗 105 5.3.2 直線定位實驗 111 第六章 結論與未來展望 119 6.1 結論 119 6.2 未來展望 120 參考文獻 123

【1】 Github, Retrieved December, 2020, from
https://github.com/
【2】 GitLab, Retrieved December, 2020, from
https://about.gitlab.com/
【3】 ROS, Retrieved December, 2020, from
https://wiki.ros.org/
【4】 F. Dai, J. Li, J. Peng et al., “Design and Control of A Multi-DOF Two Wheeled Inverted Pendulum Robot,” 2014 11th World Congress on Intelligent Control and Automation, pp.497-502, March 2015, Shenyang, China
【5】 F. Dai, X. Gao, S. Jiang et al., “A Multi-DOF Two Wheeled Inverted Pendulum Robot Climbing on A Slope,” 2014 IEEE International Conference on Robotics and Biomimetics(ROBIO 2014), pp.1958-1963, April 2015, Bali, Indonesia
【6】 A. Sinha, P. Prasoon, P. Bharadwaj et al., “Nonlinear Autonomous Control of A Two-Wheeled Inverted Pendulum Mobile Robot Based on Sliding Mode,” 2015 International Conference on Computational Intelligence and Networks, pp.52-57, March 2015, Bhubaneshwar, India
【7】 Segway of West Texas, “i2 Models,” Retrieved December, 2020, from http://www.segwaytexaswest.com/i2%20Models.htm
【8】 Segway Ninebot mini, Retrieved December, 2020, from http://www.mi.com/scooter/
【9】 QIEWA X1+智能平衡車, Retrieved December, 2020, from
https://www.qiewa-tec.com/products/x1-1
【10】 M. Stilman, J. Wang, K. Teeyapan et al., “Optimized Control Strategies for Wheeled Humanoids and Mobile Manipulators,’’ 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp.568-573, January 2010, Paris, France
【11】 M. Stilman, J. Olson and W. Gloss, “Golem Krang: Dynamically Stable Humanoid Robot for Mobile Manipulation,” 2010 IEEE International Conference on Robotics and Automation, pp.3304-3309, May 2010, Anchorage, AK, USA
【12】 K. Nozaki and T. Murakami, “A Motion Control of Two-Wheels Driven Mobile Manipulator for Human-Robot Cooperative Transportation,’’ 2009 35th Annual Conference of IEEE Industrial Electronics, pp.1574-1579, February 2010, Porto, Portugal
【13】 Y. Bae and S. Jung, “Kinematic Design and Workspace Analysis of a Korean Service Robot: KOBOKER,’’ 2011 11th International Conference on Control, Automation and Systems(ICCAS), pp.833-836, December 2011, Gyeonggi-do, South Korea
【14】 Y. Bae and S. Jung, “Balancing Control of a Mobile Manipulator with Two Wheels by an Acceleration-Based Disturbance Observer,’’ International Journal of Humanoid Robotics, Vol.15, pp.1-16, March 2018
【15】 S. Kuindersma, R. Grupen and A. Barto, “Learning Dynamic Arm Motions for Postural Recovery,’’ 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp.7-12, December 2011, Bled, Slovenia
【16】 D. Ruiken, M. Lanighan and R. Grupen, “Postural Modes and Control for Dexterous Mobile Manipulation:the UMass uBot Concept,’’ 2013 13th IEEE-RAS International Conference on Humanoid Robots, pp.280-285, March 2015, Atlanta, GA, USA
【17】 G. Zambella, G. Lentini, M. Garabini et al., “Dynamic Whole-Body Control of Unstable Wheeled Humanoid Robots,” IEEE Robotics and Automation Letters, Vol.4, pp.3489-3496, July 2019
【18】 Boston Dynamics, “Handle Mobile Box Handling Robots for Logistics,” Retrieved December, 2020, from
https://www.bostondynamics.com/handle
【19】 Y. Xin, X. RONG, Y. Li et al., “Movements and Balance Control of a Wheel-Leg Robot Based on Uncertainty and Disturbance Estimation Method,” IEEE Access, Vol.7, pp.133265-133273, September 2019
【20】 K. Yokoyama and M. Takahashi, “Dynamics-Based Nonlinear Acceleration Control With Energy Shaping for a Mobile Inverted Pendulum With a Slider Mechanism,” IEEE Transactions on Control Systems Technology, Vol.24, pp.40-55, January 2016
【21】 N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis and observations from the first amazon picking challenge,” IEEE Transactionson Automation Science and Engineering, 2016.
【22】 S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics & Automation Magazine, vol.19, pp.18–19, 2012
【23】 I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE Robotics & Automation Magazine, vol.19, no.4, pp.72–82, 2012
【24】 IPC, Retrieved December, 2020, from
https://www.geeksforgeeks.org/inter-process-communication-ipc/
【25】 ROS社群指標報告, Retrieved December, 2020, from
http://wiki.ros.org/Metrics
【26】 Github, ros-planning/moveit, Retrieved December, 2020, from
https://github.com/ros-planning/moveit
【27】 Moveit tutorial, Retrieved December, 2020, from
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/index.html
【28】 Github, ros-drivers/rosserial, Retrieved December, 2020, from
https://github.com/ros-drivers/rosserial
【29】 Rosserial protocol, Retrieved December, 2020, from
http://wiki.ros.org/rosserial
【30】 Cross-platform Serial Port library, Retrieved December, 2020, from
https://github.com/wjwwood/serial
【31】 Altera, “UART Core Handbook Volume 5,” Retrieved December, 2020
【32】 Microchip, “ATMEGA2560 datasheet,” Figure 17-1, Retrieved December, 2020
【33】 Microchip, “ATMEGA2560 datasheet,” Figure 17-7, Retrieved December, 2020
【34】 Microchip, “ATMEGA2560 datasheet,” Figure 26-1, Retrieved December, 2020
【35】 Microchip, “ATMEGA2560 datasheet,” Figure 26-5, Retrieved December, 2020
【36】 SparkFun Electronics, “Triple Axis Accelerometer Breakout - MMA7361,” Retrieved December, 2020, from
https://www.sparkfun.com/products/9652
【37】 SparkFun Electronics, “Gyro Breakout Board - LPY503AL Dual 30°/s,” Retrieved December, 2020, from
https://www.sparkfun.com/products/11341
【38】 Avago HCTL-2032, Retrieved December, 2020, from
http://docs.broadcom.com/docs/AV02-0096EN
【39】 Pieper’s solution, pp.64-80, Retrieved December, 2020, from
http://bionics.seas.ucla.edu/education/MAE_263D/MAE_263D_C04_V01.pdf
【40】 M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, United States: John Wiley & Sons, 2006.
【41】 支援MoveIt的機械手臂清單, Retrieved December, 2020, from
https://moveit.ros.org/robots/
【42】 MoveIt Architecture, Retrieved December, 2020, from
https://moveit.ros.org/documentation/concepts/
【43】 Ros_control, Retrieved December, 2020, from
http://wiki.ros.org/ros_control
【44】 Orocos, Retrieved December, 2020, from
https://docs.orocos.org/index.html
【45】 Peter Soetens, “A Software Framework for Real-Time and Distributed Robot and Machine Control,” Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 2006
【46】 URDF, Retrieved December, 2020, from
http://wiki.ros.org/urdf
【47】 M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, United States: John Wiley & Sons, 2006
【48】 SolidWorks to URDF Exporter, Retrieved December, 2020, from
http://wiki.ros.org/sw_urdf_exporter
【49】 PID, Retrieved December, 2020, from
https://en.wikipedia.org/wiki/PID_controller
【50】 R. Palm, “Sliding Mode Fuzzy Control,” IEEE Int. Conference Fuzzy System, San Diego, CA, pp. 519-526, Mar 1992
【51】 L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy System, vol.1, pp.146-155, 1993
【52】 R. Palm, “Robust Control by Fuzzy Sliding Mode,” Automatica, Vol. 30, No. 9, pp. 1429-1437, 1994
【53】 S.C. Lin, and Y.Y. Chen, “Design of Adaptive Fuzzy Sliding Mode Control for Nonlinear System Control,” in Proc. 3rd IEEE Conf. Fuzzy Syst., IEEE World congress Computat. Intell., Orlando, FL, Vol.1, pp.35-39, Jun 1994
【54】 R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, New York: John Wiley & Sons, 1994
【55】 S.Y. Yi and M.J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE Transactions on Fuzzy Systems, Vol.6, No.2, pp. 216-225, May 1998
【56】 巫憲欣, “以系統晶片發展具機器視覺之機械手臂運動控制,” 碩士論文, 國立台灣科技大學機械工程系, 2006
【57】 蘇明田, “光碟機控制器之設計應用,” 碩士論文, 國立台灣技技大學機械工程系, 2004
【58】 王振權, “單向加熱器溫度系統之控制器設計,” 碩士論文, 國立台灣技技大學機械工程系, 2005
【59】 林淑怡, “X-Y 精密定位平台於彩色濾光片影像對位控制之應用,” 碩士論文, 國立台灣技技大學機械工程系, 2006
【60】 OlliW’s Bastelseiten, IMU Data Fusing: Complementary, Kalman, and Mahony Filter, Retrieved December, 2020, from
http://www.olliw.eu/2013/imu-data-fusing/
【61】 劉昌煥校訂,許溢适譯著,AC伺服系統的理論與設計實務,文笙書局,台北,1995
【62】 Microchip, “ATMEGA2560 datasheet,” Table 14-1, Retrieved December, 2020
【63】 楊宗賢, “輪毂馬達電動車之電子差速與速度控制,” 碩士論文, 國立台灣技技大學機械工程系, 2012
【64】 高頻時鐘脈波之選擇依據實驗, Retrieved December, 2020, from
https://drive.google.com/drive/folders/19eeDTWC2ZIDW9-Hxa6B4ooewJYCcH88s?usp=sharing
【65】 施慶隆、李文猶著,機電整合控制第三版:多軸運動設計與應用,全華圖書股份有限公司,2015
【66】 V. Klemm, A. Morra, C. Salzmann∗ et al., “Ascento: A Two-Wheeled Jumping Robot,” 2019 International Conference on Robotics and Automation (ICRA), pp.7515-7521, May 2019, Montreal, QC, Canada, Canada

無法下載圖示 全文公開日期 2025/01/09 (校內網路)
全文公開日期 2025/01/09 (校外網路)
全文公開日期 2025/01/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE