簡易檢索 / 詳目顯示

研究生: 黃冠霖
Guan-Lin Huang
論文名稱: 基於變形量的元件切割軌跡規劃- 以等表面積圓管和圓球為範例
Object Deformation Based Cutting Trajectory Planning - Tube and Sphere as Examples Based on Constant Surface Area
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 林柏廷
Po-Ting Lin
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 69
中文關鍵詞: 切割焊接圓管變形相交點電腦輔助設計與製造
外文關鍵詞: Cutting, Welding, Tube, Deformation, Intersection, CAD/CAM
相關次數: 點閱:229下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣為國際知名的自行車出口大國,產業初期透過低價量產策略立定基礎,然今面對內部人力成本上漲、外部新興國家價格競爭的壓力下,勢必得透過自動化生產將製程改良,製造高品質、低成本之產品,提升品牌價值與競爭力。

    以自行車的核心:車架為例,需要將金屬管件切割成特定尺寸及形狀再用焊接將各個管件接合。然而,在製程中,管件會受到應力或熱影響而產生微變形,此時如使用標準管件尺寸產生的切割軌跡所切割出的管件零件,在組裝時將產生組裝誤差,並且於後續焊接時產生不適當的間隙或不對稱的接合,使得原先使用標準管件所建立的焊接參數及加工軌跡失效,導致焊接接頭強度下降,對工件品質造成負面影響,甚至是不容許的焊接缺陷直接造成工件報廢。因此,本研究提出一種以等表面積的方式推導圓管變形為橢圓管以及圓球體變形為橢球之模型,且透過幾何條件,將管件原始加工座標點軌跡轉換成變形後加工座標點軌跡,同時使用五軸加工機與線切割機製作三種不同變形比例之樣品,並以三次元量測儀驗證本研究所計算變形後加工座標點之有效性。

    本研究所提出之圓管等表面積變形後加工座標點算法,適用於管件發生微變形的條件,可搭配電腦輔助設計與製造軟體,並根據3D掃描管件的實際幾何形狀,即時建立對管件切割加工的正確軌跡,運用於機械手臂加工系統進行切割或焊接任務,確保管件變形後仍可準確地完成組裝。


    Taiwan is a world-renowned bicycle exporting country. In its early stages, the bicycle industry established its foundation through a low-cost mass production strategy. However, facing the pressures of rising domestic labor costs and price competition from emerging countries, it is urgent to improve the manufacturing process through automated production in order to produce quality products and boost brand value and competitiveness.
    Taking the bicycle frame, the core component, as an example, it requires cutting metal tubes into specific dimensions and shapes, followed by welding to join the various tubes together. However, both the cutting and welding processes involve significant risks and present challenges such as noise, dirt, and other issues. The optimal solution lies in using robotic arms to replace traditional human labor. However, during the manufacturing process, there may be variations in the dimensions of each batch of tubing. In such cases, using the coordinates based on standard tubing to manufacture would result in poor quality. Therefore, this study proposes a model that derives the deformation of circular tube into elliptical tube and sphere into ellipsoid based on equal surface area. By applying geometric limitation, the original intersection points of the tubing are transformed into the intersection points of the deformed tubing. Three samples with different aspect ratios are produced using a five-axis CNC machine and a WEDM machine. The effectiveness of the calculated intersection of the deformed tubing is validated using a three-dimensional measuring machine.
    The algorithm for calculating the intersection points of deformed tubing proposed in this study can be integrated with computer-aided design and manufacturing software to establish accurate trajectories in real time, which can be applied in robotic arm machining systems for either cutting or welding tasks.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 自行車車架組合 3 1.2.2 焊接缺陷 5 1.2.3 雷射加工 10 1.2.4 機械手臂焊接技術 15 1.3 論文架構 18 第二章 研究理論基礎 19 2.1 橢圓積分與橢圓周長 19 2.2 橢球表面積 20 2.3 點雲 22 2.4 均質變形 23 第三章 研究設備 24 3.1 電腦設備 24 3.2 五軸工具機 25 3.3 線切割機 28 3.4 三次元量測儀 30 第四章 圓管、圓球變形模擬與交界點計算 32 4.1 圓管變形模擬 32 4.2 圓球變形模擬 34 4.3 橢圓管交界座標點計算 35 第五章 實驗結果與討論 38 5.1 圓管變形模擬與二維平面座標點追蹤 38 5.2 圓球變形模擬 40 5.3 橢圓管交界座標點 41 第六章 結論與未來展望 45 6.1 結論 45 6.2 未來展望 46 參考文獻 47 附錄 53

    [1] 許勝傑, 紀佃昀, & 洪國峰. (2021). 機械手臂加工路徑修正技術. https://www.airitilibrary.com/Publication/alDetailedMesh?docid=P20171221002-202108-202107300009-202107300009-33-38
    [2] 張博雅. (2021). 鋁合金自行車車架銲接數值模擬與驗證. [國立中正大學 碩士學位論文]. 嘉義縣. https://hdl.handle.net/11296/krg9jm
    [3] Anderson, K. (2018). Welding Bicycles. Welding Supplies from IOC. https://www.weldingsuppliesfromioc.com/blog/welding-bicycles/
    [4] 永久機械工業股份有限公司. Lug接頭銲接. https://www.forever-f1.com.tw/list/lug.htm
    [5] 新竹高工板金科. TIG 銲接的原理. http://hcvssmw.blogspot.com/p/tig.html
    [6] 創藝工程(亞洲)有限公司. 鎢極氬弧焊的原理詳細解讀,你必須知道!. https://www.cwe-welding.com.hk/post/blog030
    [7] Welding Defects – Types, Causes, Prevention. Fractory Ltd. https://fractory.com/welding-defects-types-causes-prevention/
    [8] A GENERAL REVIEW OF THE CAUSES AND ACCEPTANCE OF SHAPE IMPERFECTIONS - PART 2. TWI Ltd. https://www.twi-global.com/technical-knowledge/job-knowledge/a-general-review-of-the-causes-and-acceptance-of-shape-imperfections-part-2-068
    [9] FABRICATION DEFECTS. Australian Welding Institute. https://welding.org.au/job-knowledge/fabrication-defects/
    [10] Fillet weld. https://en.wikipedia.org/wiki/Fillet_weld
    [11] Various Types of Welding Joints and Their Uses. Ensitech https://tigbrush.com/blog/various-types-of-welding-joints-and-their-uses/
    [12] A GENERAL REVIEW OF GEOMETRIC SHAPE IMPERFECTIONS – FILLET WELDS. Australian Welding Institute https://welding.org.au/articles/a-general-review-of-geometric-shape-imperfections-fillet-welds/
    [13] Turichin, G., Tsibulskiy, I., Kuznetsov, M., Akhmetov, A., Mildebrath, M., & Hassel, T. (2015). Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding. Physics Procedia, 78, 14-23. https://doi.org/https://doi.org/10.1016/j.phpro.2015.11.013
    [14] Wang, H., Wang, Y., Li, X., Wang, W., & Yang, X. (2021). Influence of Assembly Gap Size on the Structure and Properties of SUS301L Stainless Steel Laser Welded Lap Joint. Materials, 14(4), 996. https://doi.org/10.3390/ma14040996
    [15] Sugitani, D., & Mochizuki, M. (2013). Experimental Study on Effects of Root Gap and Fillet Size of Welds on Joint Strength. 溶接学会論文集, 31(4), 104s-108s. https://doi.org/10.2207/qjjws.31.104s
    [16] The Outrageous Cost of Poor Fit Up in Welding Operations. Welding Answers. https://weldinganswers.com/the-outrageous-cost-of-poor-fit-up/
    [17] Callens, A., & Bignonnet, A. (2012). Fatigue design of welded bicycle frames using a multiaxial criterion. Procedia Engineering, 34, 640-645. https://doi.org/https://doi.org/10.1016/j.proeng.2012.04.109
    [18] 金岡優. (2017). 透過雷射加工進化的工法轉換. 全華. https://sierra.lib.ntust.edu.tw/record=b2709445~S1*cht
    [19] 陳智禮, & 曹宏熙. (2017). 光纖雷射切割技術原理與薄鋼板切割應用簡介. https://www.airitilibrary.com/Publication/alDetailedMesh?docid=P20171221002-201702-201712220008-201712220008-56-62
    [20] Martínez-Conde, A., Krenke, T., Frybort, S., & Müller, U. (2017). Review: Comparative analysis of CO2 laser and conventional sawing for cutting of lumber and wood-based materials. Wood Science and Technology, 51(4), 943-966. https://doi.org/10.1007/s00226-017-0914-9
    [21] Gao, P., Wang, Z., & Zeng, X. (2019). Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting. International Journal of Lightweight Materials and Manufacture, 2. https://doi.org/10.1016/j.ijlmm.2019.04.001
    [22] 林聖堯, 陳政順, 周迺寬, 陳益祥, 馬小蕃, & 歐仁信. (2013). 光纖雷射切割支架的表面粗糙度和縫寬之影響 [Fiber Laser Cutting Effect on Stent Surface Roughness and Kerfs Width]. 技術學刊, 28(2), 89-96. https://www.AiritiLibrary.com/Publication/Index/10123407-201306-201307040004-201307040004-89-96
    [23] Gao, Q., Bu, H., Ling, W., Zhan, X., & Shen, H. (2022). Effect of defocusing amount on morphology and microstructure of 8-mm-thick Ti-6Al-4 V laser deep penetration welded joint. The International Journal of Advanced Manufacturing Technology, 119(5), 3747-3756. https://doi.org/10.1007/s00170-021-08450-z
    [24] Dinham, M., & Fang, G. (2013). Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding. Robotics and Computer-Integrated Manufacturing, 29(5), 288-301. https://doi.org/https://doi.org/10.1016/j.rcim.2013.01.004
    [25] Patil, V., Patil, I., Kalaichelvi, V., & Karthikeyan, R. (2019, 19-22 April 2019). Extraction of Weld Seam in 3D Point Clouds for Real Time Welding Using 5 DOF Robotic Arm. 2019 5th International Conference on Control, Automation and Robotics (ICCAR),
    [26] 陳茂愛, 任文建, 閆建新, 姜麗岩, 張振鵬, 陳東升, 張棟, 高海光, 王娟, 齊勇田, 高進強, 楊敏, & 樓小飛. (2021). 焊接機器人技術. 崧燁文化. https://sierra.lib.ntust.edu.tw/record=b2698812~S1*cht
    [27] Fang, W., Xu, X., & Tian, X. (2022). A vision-based method for narrow weld trajectory recognition of arc welding robots. The International Journal of Advanced Manufacturing Technology, 121(11-12), 8039-8050. https://doi.org/10.1007/s00170-022-09804-x
    [28] Gray, J. (2015). Legendre and Elliptic Integrals. In (pp. 21-31). Springer International Publishing. https://doi.org/10.1007/978-3-319-23715-2_3
    [29] Elliptic integral. https://en.wikipedia.org/wiki/Elliptic_integral
    [30] Chandrupatla, T. R., & Osler, T. J. (2010). THE PERIMETER OF AN ELLIPSE [Article]. Mathematical Scientist, 35(2), 122-131. http://0-search.ebscohost.com.sierra.lib.ntust.edu.tw/login.aspx?direct=true&db=ofs&AN=56637037&lang=zh-tw&site=eds-live
    [31] Schwalm, W. A. (2015). Elliptic functions as trigonometry. In Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals (pp. 1-1-1-10). Morgan & Claypool Publishers. https://doi.org/10.1088/978-1-6817-4230-4ch1
    [32] Ram, A. (2014). Elliptic Functions sn, cn, dn, as Trigonometry. http://math.soimeme.org/~arunram/Resources/EllipticFunctionsAsTrigonometry.html
    [33] Weisstein, E. W. "Ellipse.". A Wolfram Web Resource. https://mathworld.wolfram.com/Ellipse.html
    [34] Tee, G. J. (2005). Surface Area of Ellipsoid Segment. https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
    [35] Maas, L. R. M. (1994). On the surface area of an ellipsoid and related integrals of elliptic integrals. Journal of Computational and Applied Mathematics, 51(2), 237-249. https://doi.org/https://doi.org/10.1016/0377-0427(92)00009-X
    [36] Calculus III: Surface area Surface area element. https://scientificsentence.net/Equations/CalculusIII/index.php?key=yes&Integer=surface_area_element
    [37] Weisstein, E. W. "Ellipsoid". From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Ellipsoid.html
    [38] 點雲. https://zh.wikipedia.org/wiki/%E9%BB%9E%E9%9B%B2
    [39] Houghton, D. J. Structural Geology - the Basics. Introduction to Structural Geology Workbook 1. https://www.see.leeds.ac.uk/fileadmin/Documents/Admissions/Masters/step-up/Introduction_to_structural_geology_1.pdf
    [40] Burg, J.-P. Ductile deformation - Concepts of finite strain. In. Department of Earth Sciences, ETH Zurich. https://www.files.ethz.ch/structuralgeology/jpb/files/English/12Finitestrain.pdf?fbclid=IwAR17juFqCoc3uXMqHiycL7ZRegjdzvorsuM4IbNwiBi-71aJA3b0-0d2lHw
    [41] Kelly, P. Deformation and Strain. Mechanics Lecture Notes Part III: Foundations of Continuum Mechanics. https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_III/Chapter_2_Kinematics/Kinematics_of_CM_02_Deformation_Strain.pdf
    [42] NX Logo. https://www.enggwave.com/unigraphics-nx-interview-questions-answers-1
    [43] Sykora, S. (2005). Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae. https://doi.org/10.3247/SL1Math05.004
    [44] Rackauckas, C. So You Want to Know the Circumference of an Ellipse? https://www.chrisrackauckas.com/assets/Papers/ChrisRackauckas-The_Circumference_of_an_Ellipse.pdf
    [45] Roberts, M. A Formula for the Perimeter of an Ellipse. https://extremelearning.com.au/a-formula-for-the-perimeter-of-an-ellipse/
    [46] SNAP and NX Open for GRIP Enthusiasts. Siemens PLM Software. https://docs.plm.automation.siemens.com/data_services/resources/nx/10/nx_api/en_US/graphics/fileLibrary/nx/snap/snap_for_grip_enthusiasts_V10.pdf
    [47] Baker, J. R. Curve to pts. https://www.eng-tips.com/viewthread.cfm?qid=272761

    QR CODE