簡易檢索 / 詳目顯示

研究生: 賴睿于
Jui-Yu Lai
論文名稱: 應用模糊追蹤遞增控制於室外四旋翼之即時障礙物偵測、閃避及地圖建構
On-Line Obstacle Detection, Avoidance and Mapping of an Outdoor Quadrotor Using EKF Based Fuzzy Tracking Incremental Control
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
陳博現
Bor-Sen Chen
游文雄
Wen-Shyong Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 即時障礙物偵測、閃避及地圖建構感測訊號整合擴增式卡爾曼濾波器模糊整合的滑動模式控制器軌跡規劃四旋翼無人飛行載具
外文關鍵詞: On-line obstacle detection, avoidance and mapping, Sensor fusion, EKF, Fuzzy integral sliding mode control, Trajectory planning, Quadrotor
相關次數: 點閱:256下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為戶外自主飛行的四旋翼無人飛行載具的控制與應用。在已規劃的室外的四旋翼路徑上,利用雷射掃描感測器即時地檢測未知的障礙物,包含不同的形狀、數量、材質及位置。基於由每個檢測到的障礙物構成之三角形來比較,朝著具有大於閥值的最大檢測距離以及最大角度範圍的三角形中心角度方向前進一個特定距離。相反的,若障礙物偵測過程中遇到無路可走,便導航至一個特定的高度,並繼續障礙物檢測。在即時偵測障礙物的同時也為下一段飛行建立地圖。而室外的四旋翼,感測器容易被隨機訊號干擾,故利用EKF整合感測器所得到的訊號,估測感測器整合之模糊整合的滑動控制器的回授訊號。無論受控系統及輸入、輸出對的數據如何,所提出的控制僅由滿足模糊規則表極性的系統極性來設計,基於系統函數的下界以及相對系統函數上界的估測誤差,閉迴路系統的穩定性是確定的。最後,由實驗室外四旋翼飛行器追蹤具有未知障礙物的特定規劃軌跡,驗證了此控制的有效性及強健性。


    The unknown obstacles, including different shapes, numbers, materials, and localizations, in the vicinity of planned trajectory of an outdoor quadrotor, are on-line detected by laser sweep scanner. Based on the comparison among detected triangles containing each obstacle, the central orientation of the triangle with maximum detected distance and triangle angle larger than the threshold values is assigned to fly a specific distance. On the contrary, the quadrotor probably encounters a dead end and is then navigated to a specific altitude for the continuous procedure of obstacle detection. By on-line detection, an obstacle mapping is also established for the next flight. Since the sensing signals of an outdoor quadrotor are easily affected by stochastic noise, an EKF fuses these sensory signals to estimate the feedback signals of a sensor-fusion fuzzy integral sliding-mode control. Irrespective of the number and data pair of input and output, the proposed control is designed only by the system polarity satisfying the polarity of fuzzy rule table. Based on the lower bound of system function and the relative upper bound of estimated output error and system function, the stability of the closed-loop system is assured. Finally, the experiments of an outdoor quadrotor to track a specific planning trajectory with unknown obstacles validate the effectiveness and robustness of the proposed control.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究目的與動機 1.3 文獻回顧 1.4 論文架構 第二章 系統架構及任務描述 2.1 系統架構 2.1.1 動力系統 2.1.2 嵌入式系統 2.1.3 感測器 2.1.4 無線傳輸系統 2.2 任務描述 2.2.1 姿態定義 2.2.2 任務敘述 第三章 即時障礙物偵測、閃避及地圖建構 3.1 即時障礙物偵測 3.2 即時避障策略 3.3 即時地圖建構 第四章 基於EKF之模糊軌跡追蹤遞增控制器 4.1 感測器模型 4.2 擴增式卡爾曼濾波器 (EKF) 4.3模糊追蹤遞增控制 4.4 軌跡規劃(On-Line Path Planner) 第五章 實驗結果與討論 5.1 實驗設置 5.1.1 實驗參數設置 5.2實驗結果 實驗一: 即時障礙物偵測、閃避及地圖建置實驗 實驗二: 不同起始位置實驗 實驗三: 不同障礙物擺放位置實驗 5.3 討論 第六章 結論與未來之研究 參考文獻

    [1] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous indoor quadrotor,” IEEE Trans. Robotics, vol. 28, no. 1, pp. 90-100, Feb. 2012.
    [2] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive quadrotor control: Attitude, altitude and position experimental studies,” IET, Control Theory & Appl., vol. 6, no. 12, pp. 1812-1827, Aug. 2012.
    [3] K. W. Jeong, K. J. Kim, Y. K. Kim, H. W. Kim, and J. Lee, “Outdoor localization for quad-rotor using extended Kalman filter and path planning,” Int. Journal of Humanoid Robotics, vol. 11, no. 3, pp. 1-14, 2014.
    [4] S. Islam, P. X. Liu, and A. E. Saddik, “Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1563-1574, Mar. 2015.
    [5] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “A novel overactuated quadrotor unmanned aerial vehicle: modeling, control, and experimental validation,” IEEE Trans. Contr. Syst. Technol., vol. 23, no. 2, pp. 540-556, Mar. 2015.
    [6] H. Liu, X. Wang, and Y. Zhong, “Quaternion-based robust attitude control for uncertain robotic quadrotors,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 405-415, Apr. 2015.
    [7] Y. C. Choi and H. S. Ahn, “Nonlinear control of quadrotor for point tracking: actual implementation and experimental tests,” IEEE Trans. Mechatronics, vol. 20, no. 2, pp. 1179-1189, Jun. 2015.
    [8] H. Liu, D. Li, Z. Zuo, and Y. Zhong, “Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2263-2274, Apr. 2016.
    [9] Z. Yang and S. Shen, “Monocular visual–inertial state estimation with online initialization and camera–imu extrinsic calibration,” IEEE Trans. Autom. Sci. & Engr., vol. 14, no. 1, pp. 39–51, Jan. 2017.
    [10] E. Kayacan and R. Maslim, “Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 339-348, Feb. 2017.
    [11] K. Qiu, T. Liu, and S. Shen, “Model-based global localization for aerial robots using edge alignment,” IEEE Robotics and Automation Letters, vol. 2, no.3, pp. 1256-163, Jul. 2017.
    [12] B. Mu, K. Zhang, and Y. Shi, “Integral sliding mode flight controller design for a quadrotor and the application in a heterogeneous multi-agent system,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9389-9398, Dec. 2017.
    [13] R. Deits1 and R. Tedrake, “Efficient mixed-integer planning for UAVs in cluttered environments,” IEEE Int. Conf. on Robotics and Automation, Seattle, Washington, pp. 42-49, May 26-30, 2015.
    [14] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors,” IEEE Access, vol. 20, pp. 599-609, May 2015.
    [15] D. Bareiss, J. van den Berg, and K. K. Leang, “Stochastic automatic collision avoidance for tele- operated unmanned aerial vehicles,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 4818-4823, Hamburg, Germany, Sep. 28–Oct. 2, 2015.
    [16] J. Park and Y. Kim, “Collision avoidance for quadrotor using stereo vision depth maps,” IEEE Trans. Aerospace and Electron. Syst., vol. 51, no. 4, pp. 3226- 3241, Oct. 2015.
    [17] J. Park and Y. Kim, “Real-time collision avoidance control of quadrotor using ellipsoid as a bounding box,” European Control Conference, pp. 2152-2158, Aalborg, Denmark, Jun. 29- Jul. 1, 2016.
    [18] F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory generation for quadrotor flight in complex environments,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 3681-3686, Vancouver, BC, Canada, Sep. 24–28, 2017.
    [19] C.-L. Hwang and H. H. Huang “Experimental validation for a car-like automated ground vehicle with trajectory tracking, obstacle avoidance, and target approach using hierarchical sliding mode tracking control,” IEEE IECON-2017, pp. 2858-2863, Beijing China, Oct. 29th-Nov. 1st, 2017.
    [20] M. C. P. Santos, C. D. Rosales, M. Sarcinelli-Filho, and Ricardo Carelli, “A novel null-space-based UAV trajectory tracking controller with collision avoidance,” IEEE Trans. Mechatronics, vol. 22, no. 6, pp. 2543-2553, Dec. 2017.
    [21] S. Spedicato and G. Notarstefano, “Minimum-time trajectory generation for quadrotors in constrained environments,” IEEE Trans. Contr. Syst. Technol., vol. 26, no.4, pp. 1335-1344, Jul. 2018.
    [22] D. Cabecinhas, S. Brás, R. Cunha, C. Silvestre, and P. Oliveira, “Integrated visual servoing solution to quadrotor stabilization and attitude estimation using a pan and tilt camera,” IEEE Trans. Contr. Syst. Technol., to appear, 2018.
    [23] B. J. Guerreiro, C. Silvestre, R. Cunha, and D. Cabecinhas, “LiDAR-based control of autonomous rotorcraft for the inspection of pierlike structures,” IEEE Trans. Contr. Syst. Technol., vol. 26, no.4, pp. 1430-1438, Jul. 2018.
    [24] J. Chen, C. Xu, C. Wu, and W. Xu, “Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles,” IEEE Trans. Ind. Inform., vol. 14, no. 1, pp. 292-300, Jan. 2018.
    [25] H. Chaoui, M. Khayamy, and A. A. Aljarboua, “Adaptive interval Type-2 fuzzy logic control for PMSM drives with a modified reference frame,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3786-3797, May 2017.
    [26] H. Lim, J. Park, D. Lee, and H.J. Kim, “Build your own quadrotor,” IEEE Robotics and Automation Magazine, pp. 33-45, Sep. 2012.
    [27] G. Zhong, Z. Shao, H. Deng, and J. Ren, “Precise position synchronous control for multi-axis servo systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3707-3717, May 2017.
    [28] G. Navarro, D. K. Umberger, and M. Manic, “VD-IT2, virtual disk cloning on disk arrays using a Type-2 fuzzy controller,” IEEE Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1752-1764, Dec. 2017.
    [29] G. Lachapelle, “Sigma-point Kalman filtering for integrated GPS and inertial navigation,” IEEE Trans. Aerospace and Electronic Syst., vol. 42, no. 2, pp. 750-756, Apr. 2006.
    [30] C.-L. Hwang, C. C. Yang, and J. Y. Hung, “Path tracking of an autonomous ground vehicle with different payloads and ground conditions by hierarchical improved fuzzy dynamic sliding-mode control,” IEEE Trans. Fuzzy Syst., vol. 26, no. 2, pp. 899-914, Apr. 2018.

    QR CODE