簡易檢索 / 詳目顯示

研究生: 曾也晏
Ye-Yan Zeng
論文名稱: 以多標籤門檻學習改善標籤傳播演算法在無特徵圖上之分類表現
Improving the Label Propagation Algorithm on a Non-feature Network by Multi-label Threshold Learning
指導教授: 戴碧如
Bi-Ru Dai
口試委員: 戴志華
Chih-Hua Tai
帥宏翰
Hong-Han Shuai
陳怡伶
Yi-Ling Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 36
中文關鍵詞: 圖上的多標籤分類標籤傳播演算法無特徵資料
外文關鍵詞: Multi-label classification on networks, Label propagation, Non-feature data
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於圖上節點的多標籤分類問題來說,傳統的傳播演算法十分依賴每筆資料的特徵資訊以建立轉移矩陣,並以此在圖上傳播標籤資訊。然而,隨著圖形資料的快速成長,要正確且完整地收集每一筆資料的所有特徵更顯費時昂貴,因此,傳播演算法在無特徵的圖形資料上通常難以取得較好的分類表現。根據我們的觀察,在此情況下,傳播演算法在傳播標籤資訊的過程時常發生忽略少數意見的問題。在這篇論文中,我們提出了一種稱為 Label Propagation-Based Classification (LPBC) 的框架使 Label Propagation (LP) 能較好的處理無特徵圖上的多標籤分類問題。透過特別的多標籤門檻學習,LPBC 減少了傳播演算法在傳播標籤資訊的過程中,忽略少數意見問題的發生,而實驗結果也展現了相較於 LP,我們所提出框架的有效性與效能的增強。


Recently, with the exponential growth of network data, collecting whole features of each node correctly is time-consuming and expensive. For a classification problem on networks, traditional propagation algorithms, which rely on the feature information to build transition matrix to propagate label information on networks, generally do not perform well when the feature information is not available. Our observation shows that the problem of minority ignorance occurs on the propagation process of traditional algorithms. In this paper, we propose a LPBC framework to allow the Label Propagation (LP) algorithm to deal with multi-label classification problem on non-feature networks. With a novel threshold learning process, LPBC reduces the minority ignorance when the label information is propagated. Experimental results demonstrated the effectiveness and the performance improvement of the proposed framework.

指導教授推薦書 II 論文口試委員審定書 III Abstract IV 論文摘要 V 致謝 VI Table of Contents VII List of Tables VIII List of Figures IX 1. Introduction 1 1.1 Background 1 1.2 Motivation and Contribution 2 1.3 Thesis Organization 3 2. Related Works 5 3. Proposed Method 6 3.1 Problem Formulation 6 3.2 LPBC Overview 8 3.3 Label Propagation-Based Classification 8 3.3.1 Initialization of the Labeling Score Matrix Sc 9 3.3.2 Initialization of the Transition Matrix W 9 3.3.3 Labeling Score Propagation 10 3.3.4 Generation of the Prediction P 10 3.3.5 Threshold Learning of LPBC 11 3.3.6 Algorithms and Summary 14 4. Experimental Results 18 4.1 Experiment Settings 18 4.2 Comparatives Opponents 18 4.3 Results 20 5. Conclusion and Future Work 25 6. Reference 26

1. S. Nandanwar and M. N. Murty, “Structural neighborhood based classification of nodes in a network,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. p. 1085-1094
2. W. Ye, L. Zhou, D. Mautz, C. Plant and C. Böhm, “Learning from Labeled and Unlabeled Vertices in Networks,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. p. 1265-1274.
3. Y. Zhao, L. Li and X. Wu, “Link Prediction-Based Multi-label Classification on Networked Data,” in Data Science in Cyberspace (DSC), IEEE International Conference on. IEEE, 2016. p. 61-68.
4. D. Wang, P. Cui and W. Zhu, “Structural deep network embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016. p. 1225-1234.
5. B. Perozzi, R. Al-Rfou and S. Skiena, “Deepwalk: Online learning of social rep-resentations,” in Proceedings of the 20th ACM SIGKDD international confer-ence on Knowledge discovery and data mining. ACM, 2014. p. 701-710.
6. X. Li and Y. Guo, “Active Learning with Multi-Label SVM Classification,” in Proceedings of the 23rd International Joint Conference on Artificial Intelli-gence, 2013. p. 1479-1485.
7. L. Feremans, B. Cule, C. Vens and B. Goethals, “Combining Instance and Fea-ture neighbors for Efficient Multi-label Classification,” 2017.
8. Z. Lin and B. Dai, “Reweighting Forest for Extreme Multi-label Classification,” in International Conference on Big Data Analytics and Knowledge Discovery. Springer, Cham, 2017. p. 286-299.
9. X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data with la-bel propagation,” in Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.
10. O. Zoidi, E. Foriadou, N. Nikolaidis and I. Pitas, “Graph-based label propagation in digital media: A review,” ACM Computing Surveys (CSUR), 2015, 47.3: 48.
11. A. Anagnostopoulos, R. Kumar and M. Mahdian, “Influence and correlation in social networks,” in Proceedings of the 14th ACM SIGKDD international con-ference on Knowledge discovery and data mining. ACM, 2008. p. 7-15.
12. D. Zhou, O. Bousquet, T. N. Lal, J. Weston and B. Schölkopf, “Learning with local and global consistency,” in Advances in neural information processing sys-tems. 2004. p. 321-328.
13. M. Zhang, and Z. Zhou, “A review on multi-label learning algorithms,” IEEE transactions on knowledge and data engineering, 2014, 26.8: 1819-1837.
14. Goyal, Palash, and Emilio Ferrara. “Graph embedding techniques, applications, and performance: A survey,” Knowledge-Based Systems 151 (2018): 78-94.
15. Fan, Rong-En, et al. “LIBLINEAR: A library for large linear classifica-tion,” Journal of machine learning research 9.Aug (2008): 1871-1874.

無法下載圖示 全文公開日期 2023/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE