簡易檢索 / 詳目顯示

研究生: 何思瑩
Szu-Ying Ho
論文名稱: 內嵌式記憶體良率與可靠度之協同提升技術
Synergistic Techniques for Yield and Reliability Enhancement of Embedded Memories
指導教授: 呂學坤
Shyue-Kung Lu
口試委員: 王乃堅
Nai-Jian Wang
李進福
Jin-Fu Li
洪進華
none
陳俊良
Jiann-Liang Chen
張慶元
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 65
中文關鍵詞: 內嵌式記憶體自我修復錯誤更正碼良率可靠度
外文關鍵詞: embedded memories, self-repair, error correction code, yield, reliability
相關次數: 點閱:318下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程技術的進步,系統晶片 (SOC) 中使用的嵌入式記憶體容量與密度越來越高,而導致記憶體故障更容易發生。因此,記憶體的良率很大程度決定系統晶片的良率。單一位元故障占所有故障形態比例最高,針對此種故障形態,大部分的嵌入式記憶體使用錯誤更正碼 (ECC) 偵測並修正單一位元故障。近期,許多研究提出了結合錯誤更正碼和內建自我修復 (BISR) 的方法來提升記憶體的良率,藉由在記憶體的自我測試模式時將單一位元故障記錄起來,之後並不馬上使用備用元件將其修復,而是在正常模式時以錯誤更正碼將其成功修復。但並沒有針對隱性的多重錯誤 (Recessive Multiple Faults, RMFs) 提出解決辦法。
    我們針對此問題提出新的架構,使用新的修復方法,加入了多重故障偵測電路,可辨別單一位元錯誤和多位元錯誤,並使用備用元件修復多位元錯誤與單一位元故障所組成的故障列,剩下的單一位元故障是由錯誤更正碼更正。徹底消除隱性的多重錯誤之問題,而能提升記憶體的可靠度,所提出的技術可與傳統內建自我修復架構結合。此外,我們使用模擬器進行分析,結果顯示修復率及良率有顯著的提升,對於一個 512 × 1024 的記憶體,在瑕疵 (Defect) 數目為4時,分別有兩個備用行及備用列的情況下,修復率可以高達98.8%。我們實現了一個 4K × 8 記憶體晶片設計,使用 TSMC Artisan 0.18μm 1P6M 製程,晶片面積為1.07 × 1.70 mm2。整體而言,我們的方案有更好的可靠度、修復率及良率,而硬體成本幾乎可以忽略。


    As semiconductor process technology continues to progress, the density of embedded memory in system-on-a-chip (SOC) keeps increasing. Hence, memory failures are more likely to occur. As a result, the yield of embedded memory will dominate the yield of the whole chip. Single-cell faults occupy the highest proportion among all failure patterns. For single-cell faults, most embedded memories incorporate error correction codes (ECC) for detection and correction. Recently, many researchers propose methods which improve the fabrication yield of memories by integrating ECC and built-in self-repair (BISR) techniques. These works record single-cell faults in the self-test mode and do not use the spare elements to repair them immediately. Instead, we use the error correction codes to repair these faults in the normal mode. However, only few works propose solutions to deal with multiple faults which cannot be detected by using only one test element.

    In this thesis, we propose a new repair architecture aiming at the problem of recessive multiple faults (RMF). A novel repair method is proposed to distinguish single-bit faults and multiple-bit faults. We use spare elements to repair multiple-bit faults and faulty columns consisting of single-bit faults. The remaining single-bit faults are corrected by the adopted error correction code. Therefore, we fix the problem of recessive multiple faults (RMF) and enhance the reliability of memories. The proposed techniques can be easily integrated with the conventional BISR architectures. Moreover, we develop a simulator to evaluate repair rates. Experimental results show that the repair rate and the yield can be improved significantly. We can achieve up to 98.8% repair rate for a 512 × 1024 memory with two spare rows and two spare columns and 4 defects injected. An experimental 4K × 8 memory chip is designed and implemented with TSMC 0.18 m 1P6M process. The die size is 1.07 × 1.70 mm2. To sum up, we propose a integrated BISR scheme which can achieve a better reliability level, repair rate and yield. Moreover, the hardware cost is almost negligible.

    目錄 誌謝 Ⅰ 摘要 Ⅱ Abstract Ⅲ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 Ⅹ 第一章 簡介 1 1.1 動機與背景 1 1.2 組織架構 3 第二章 內建自我測試、診斷和修復技術 5 2.1 故障模型 5 2.2 測試演算法 7 2.3 內建自我測試 9 2.4 內建自我診斷 10 2.5 內建自我修復和內建備用記憶體分析 11 第三章 錯誤檢查及校正技術 14 3.1 錯誤檢測和糾正碼 14 3.2 漢明碼 16 3.3 修正漢明碼 17 3.4 蕭氏碼 17 3.5 三位元錯誤之錯誤更正 19 第四章 內嵌式記憶體良率與可靠度之協同提升技術 20 4.1 傳統結合錯誤更正碼和內建自我修復方法 20 4.2 內嵌式記憶體良率與可靠度之協同提升技術測試修復流程 22 第五章 內嵌式記憶體良率與可靠度之協同提升技術架構 27 5.1 內嵌式記憶體良率與可靠度之協同提升技術的狀態圖與內建自我修復架構 27 5.2 內嵌式記憶體良率與可靠度之協同提升技術範例 31 第六章 實驗結果 37 6.1 瑕疵分布和故障模型 37 6.2 修復率分析 39 6.3 硬體成本分析 45 6.4 良率分析 47 6.5 內嵌式記憶體良率與可靠度之協同提升技術架構實現 48 第七章 結論與未來展望 51 參考文獻 51

    [1] A. Allan et al., “2001 Technology Roadmap for Semiconductors,” Computers, vol. 35, no. 1, pp. 42-53, Jan. 2002.
    [2] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I: The three radiation sources,” IEEE Trans. Device and Materials Reliability, vol. 1, no. 1, pp. 17-22, Mar. 2001.
    [3] D. C. Bossen, and M. Y. Hsiao, “A System Solution to the Memory Soft Error Problem,” IBM Journal of Research and Development, vol. 24, no. 3, pp. 390-397, May 1980.
    [4] W. Kuo, W. T. K. Chien, and T. Kim, Reliability, Yield, and Stress Burn-in, Kluwer Academic Publishers, Boston, 1998.
    [5] S. K. Lu, and C. H. Hsu, “Built-in self-repair for divided-word line memory” in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 13-16,May 2001.
    [6] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu, “Built-in redundancy analysis for memory yield improvement,” IEEE Trans. on Reliabilities, vol. 52, no. 4, pp. 386-399, Dec. 2003.
    [7] S. K. Lu, “Built-in self-repair techniques for embedded RAMs,” IEE Proc. Computer & Digital Techniques, vol. 150, no. 4, pp. 201-208, July 2003.
    [8] W. K. Huang, Y. N. Shen, and F. Lombardi, “New approaches for the repair of memories with redundancy by row/column deletion for yield enhancement,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 3, pp. 323-328, Mar. 1990.
    [9] S. K. Lu, Y. C. Tsai, H. W. Lin, and K. H. Wang, “Efficient built-In redundancy analysis for embedded memories with 2-D redundancy,” in Proc. Int’l SOC Design Conference, pp. 380-383, Oct. 2004.
    [10] J. F. Li, J. C. Yeh, R. F. Huang, and C. W. Wu, “A built-in self-repair scheme for semiconductor memories with 2-D redundancy,” in Proc. Int’l Test Conference, vol. 1, pp. 393–402, 2003.
    [11] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system speeds test and repair of redundant memories,” Electronics, pp. 175-179, Jan 1984.
    [12] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993.
    [13] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using redundant words,” in Proc. Int’l. Test Conf. (ITC), pp. 995-1001, Oct. 2001.
    [14] C. W. Wang, R. S. Tzeng, C. F. Wu, C. T. Huang, C. W. Wu, S.Y. Huang, S. H. Lin, and H. P. Wang, “A built-in self-test and self-diagnosis scheme for heterogeneous SRAM clusters,” in Proc. Asian Test Symp. (ATS), pp. 103-108, Nov. 2001.
    [15] Z. Y. Wang, Y. M. Tsai, and S. K. Lu, “Built-in self-repair techniques for heterogeneous memory cores,” in Proc. Pacific Rim Int’l Symp. in Dependable Computing, pp. 69-74, Nov. 2009.
    [16] T. W. Tseng, C. H. Wu, Y. J. Huang, J. F. Li, A. Pao, K. Chiu, and E. Chen, “A built-in self-repair scheme for multiport RAMs,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 355-360, May 2007.
    [17] S. K. Lu, C. L. Yang, Y. C. Hsiao, and C. W. Wu, “Efficient BISR techniques for embedded memories considering cluster faults,” IEEE Trans. on Very Large Scale Integr. Syst., vol. 18, no. 2, pp. 184-193, Feb. 2010.
    [18] S. Y. Kuo, and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays,” IEEE Design and Test of Computers, vol. 4, no. 1, pp. 24-31, June 1987.
    [19] T. H. Wu, P. Y. Chen, M Lee, B. Y. Lin, C. W. Wu, C-H Tien, H. C. Lin, H. Chen, C. N. Peng, and M. J. Wang, “A memory yield improvement scheme combining built-in self-repair and error correction codes,” in Proc. Int’l Test Conference (ITC), pp. 5-8, Nov. 2012.
    [20] Michael L. Bushnell, Vishwani D. Agrawal, “Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits,” Kluwer Academic Publishers, 2000.
    [21] J. van de Goor, Zai Al-Ars, “Functional Memory Faults: A Formal Notation and a Taxonomy,” in Proc. IEEE VLSI Test Symposium, pp. 281-289, Apr. 2000.
    [22] C. F. Wu, C.T. Huang and C. W. Wu, “RAMSES: A fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems(DFT), pp. 165-173, Nov. 1999.
    [23] C. F. Wu, C.T. Huang and K. L. Cheng, and C. W. Wu, “Fault simulation and test algorithm generation for random access memories,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp. 480-490, Apr. 2002
    [24] Syntest Inc., “TurboBIST-Memory and Built-In Self-Test Generator,” 2011.
    [25] K. L. Cheng, C. M. Hsueh, J. R. Huang, J. C. Yeh, C. T. Huang, and C. W. Wu, “Automatic generation of memory built-in self-test cores for system-on-chip,” in Proc. IEEE Asian Test Symp. (ATS), pp. 91-96, Nov. 2001.
    [26] S. Pateras, “IP for embedded diagnosis,” IEEE Design & Test of Computers, vol. 19, no. 3, pp. 44–53, May-June 2002.
    [27] S. K. Lu, “A novel built-in self-test approach for embedded RAMs,” Journal of Electronic Testing: Theory and Application, vol. 19, pp. 315-324, June 2003.
    [28] J. R. Day, “A fault-driven comprehensive redundancy algorithm for repair of dynamic RAM’s,” IEEE Design & Test of Computers, vol. 2, no. 3, pp. 33-44, 1985.
    [29] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Tech. J., vol. XXVI, no. 2, pp. 147-160, Apr. 1950.
    [30] M. Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM Journal of Research and Development, vol. 14, no. 4, pp. 395-401, July 1970.
    [31] M. Richter, K. Oberlaender, and M. Goessel, “New linear SEC-DED codes with Rreduced triple bit error miscorrection probability,” in Proc. International On-Line Testing Symposium, pp. 37-42, July 2008.
    [32] C. L. Su, Y. T. Yeh, and C. W. Wu, “An integrated ECC and redundancy repair scheme for memory reliability enhancement,” in Proc. IEEE Int'l Symp. On Defect and Fault Tolerance in VLSI Systems (DFT), Monterey, CA, pp. 81-89,Oct. 2005.
    [33] C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield statistics,” Proceedings of the IEEE, vol. 71, no. 4, pp. 453-470, Apr. 1983.
    [34] B. W. Johnson, “Design and Analysis of Fault Tolerant Digital System,” pp 439-451, Addison Wesley, 1989.

    QR CODE