簡易檢索 / 詳目顯示

研究生: 謝佾學
Yi-Hsueh Hsieh
論文名稱: 自製氣壓肌肉下背部輔具之 設計及製作
Design and Fabrication of Pneumatic Muscle Lower Back Support Wear
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 姜嘉瑞
Chia-Jui Chiang
楊秉祥
Bing-Shiang Yang
李維楨
Wei-chen Lee
陳麗如
Li-Ru Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 氣壓肌肉致動器動力輔助服下背部護具
外文關鍵詞: Pneumatic muscle actuator, Power assist suit, Lower back support wear
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氣壓肌肉為一種具有快速的響應、調節容易、且安全性高等優點之致動器,其可撓性使人體與機械之間的接觸更加安全,因此期望可將氣壓肌肉應用於義肢輔具或復健穿戴衣物進而協助老年人或身障人士改善其自主生活能力。本研究之目的為研發一套使用氣壓肌肉作為致動器之下背部輔具,減少使用者搬運重物所需的力量。惟臺灣境內目前尚未有廠商生產氣壓肌肉,若有需求只能仰賴國外進口,但國外廠
商的設計不見得能完全符合穿戴輔具應用的需求,成本也相對較高。本論文完成說明自製氣壓肌肉的製作步驟,以及氣壓肌肉與下背部輔助服結合的步驟。研究中針對氣壓肌肉在輔助服上的裝配位置分為三種裝配位置 (Type 1、Type 2、Type 3) 進行測試,其差別在於氣壓肌肉與下方固定點的距離。根據實驗結果,將三種裝配的氣壓肌肉的力量 F、收縮量 h 與假人傾斜角度 θ 的關係進行比較,發現氣壓肌肉裝配方式不同對輔助服能提供的效益影響不大,因此未來在實際人體上設計時,氣壓肌肉的安裝位置所受到限制較小。在氣壓肌肉操作壓力為 5bar 時,此輔具所能提供的最大扭矩為假人本身 3.5 公斤加上負重 14 公斤所造成的扭矩。而在進行扭矩平衡時也使用了薄膜式壓力感測器進行表面壓力的量測,其中單點最大壓力為 250 kPa。未來將以此輔助服為基礎發展控制法則,使其能夠平順的將人體從水平拉至挺直狀態,將其應用於義肢輔具相關技術。


Pneumatic muscle is an actuator with fast response, easy to adjustment, and high safety as its pliability makes the contact between the human body and the machine safer. Therefore, the pneumatic muscles are expected to be applied to assistive technologies that enables the elders and disables to live autonomously. The purpose of this research is to develop a back support wear that use pneumatic muscles as actuators to reduce the amount of power users need to carry heavy loads. However, there are no manufacturers producing pneumatic muscles in Taiwan currently. If there is demand, it can only rely on foreign imports, but the design of foreign manufacturers may not be fully compatible with the requirements of wearing accessories, and the cost is relatively high. This thesis completes the steps of how to make a pneumatic muscle and combine it with a back support wear. In the experiment, the assembly position of the pneumatic muscles on the auxiliary clothing was divided into three assembly positions for testing(Type 1、Type 2、Type 3), and the difference between these was the distance between the pneumatic muscles and the fixed point below. According to the experimental results, the relationship between the strength F, the contraction amount hand the angle of inclination of the dummy of the three assembled pneumatic muscles are compared. It is found that the different methods of assembly of the pneumatic muscle have little effect on the benefit provided by the auxiliary service. Therefore, in the future design of actual human body, the installation position of the pneumatic muscle is less restricted. The experimental results show that at a barometric pressure of 5 bar, the maximum torque that the accessory can provide is the torque from 3.5 kg dummy and 14 kg load. A membrane pressure sensor was also used to measure the surface pressure during torque balance, with a single point maximum pressure of 250 kPa. In the future, the control law will be developed based on this auxiliary, so that it can smoothly pull the human body from the horizontal to the straight state and apply it to the related technologies of prosthetic aids.

摘要.................................................................................................................................... i 英文摘要............................................................................................................................ ii 致謝.................................................................................................................................... iv 目錄.................................................................................................................................... vii 圖目錄................................................................................................................................ xi 表目錄................................................................................................................................ xii 第一章 導論...................................................................................................................... 1 1.1 研究背景........................................................................................................... 1 1.1.1 氣壓肌肉致動器作動原理介紹....................................................... 2 1.1.2 動力輔助服介紹............................................................................... 4 1.2 既有文獻與成就............................................................................................... 5 1.3 研究動機與貢獻............................................................................................... 7 1.4 論文架構........................................................................................................... 8 第二章 實驗平臺與設備介紹.......................................................................................... 9 2.1 氣壓肌肉測試平臺........................................................................................... 10 2.2 自製氣壓肌肉輔助服實驗平臺....................................................................... 13 2.3 實驗硬體設備................................................................................................... 16 2.3.1 壓力調節閥 (Pressure control valve)............................................... 17 v 目 錄 2.3.2 壓力感測器 (Pressure sensor))......................................................... 18 2.3.3 類比式角度感測器 (analogy angle sensor)).................................... 19 2.3.4 負載量測系統 (Load measurement system))................................... 20 2.3.5 氣源供給源 (Pressure source))......................................................... 21 2.3.6 資料擷取系統 (Data acquisition system)......................................... 22 2.3.7 薄膜式力量感測片........................................................................... 23 2.4 實驗軟體設備................................................................................................... 24 2.4.1 Matlab............................................................................................... 24 2.4.2 Simulink............................................................................................ 24 2.4.3 Simulink Real-Time.......................................................................... 25 第三章 自製氣壓肌肉下背部輔助服.............................................................................. 26 3.1 自製氣壓肌肉................................................................................................... 26 3.2 氣壓肌肉下背部輔助服................................................................................... 35 3.2.1 材料替換-雙肩登山背帶................................................................. 35 3.2.2 氣壓肌肉下背部輔助服組裝方法................................................... 36 3.3 實驗平台設計................................................................................................... 38 3.3.1 實驗平台扭矩平衡........................................................................... 39 3.3.2 氣壓肌肉在輔助服上之配置位置................................................... 42 3.4 薄膜式力量感測片安裝位置........................................................................... 44 第四章 結果與討論.......................................................................................................... 46 4.1 自製氣壓肌肉................................................................................................... 46 4.2 氣壓肌肉下背部輔助服................................................................................... 48 4.2.1 Type 1 裝配方式............................................................................... 49 vi 目 錄 4.2.2 Type 2 裝配方式............................................................................... 58 4.2.3 Type 3 裝配方式............................................................................... 64 4.2.4 Type 1、Type 2、Type 3 裝配方式比較......................................... 68 4.3 下背部輔助服對人體造成之負荷................................................................... 74 第五章 結論與未來展望.................................................................................................. 79 5.1 結論................................................................................................................... 79 5.2 未來展望........................................................................................................... 83 參考文獻............................................................................................................................ 88

[1] SARCOS, “Meet guardian™ xo®.” https://www.sarcos.com/, 2019.
[2] cwwang.com Che-Wei Wang, “Soft pneumatic exoskeleton.” https://www.
cwwang.com/2008/04/08/soft-pneumatic-exoskeleton/, 2008.
[3] M. Inc. http://www.mcdavid.com.tw/, 2017.
[4] 歐佩宜, “以模型為基礎進行氣壓肌肉致動器之設計及製作,” Master’s thesis, 國立
台灣科技大學, 7 2018.
[5] Morita, “Rakunie 樂酷護腰服.” http://www.easymore.com.tw/Morita.
html, 2012.
[6] “Investigation of disease on workplace by the ministry of health,” (2014).
[7] L.T.Net,“內政部老年人口統計.”https://news.ltn.com.tw/news/life/
breakingnews/2391182, 2018.
[8] K.Naruse, S.Kawai, andT.Kukichi, “Three-dimensionallifting-upmotionanalysisfor
wearable power assist device of lower back support,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2959–2964, Aug 2005.
83
參 考 文 獻
[9] Y. Liu and S. Guo, “Design of a novel wearable power-assist exoskeleton device,” 2018
13th World Congress on Intelligent Control and Automation (WCICA), pp. 131–134, 07
2018.
[10] K. Kiguchi, M. H. Rahman, and T. Yamaguchi, “Adaptation strategy for the 3dof ex-
oskeleton for upper-limb motion assist,” in Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pp. 2296–2301, April 2005.
[11] S. Mohri, H. Inose, K. Yokoyama, Y. Yamada, I. Kikutani, and T. Nakamura, “Devel-
opment of endoskeleton type knee auxiliary power assist suit using pneumatic artificial
muscles,” in 2016 IEEE International Conference on Advanced Intelligent Mechatron-
ics (AIM), pp. 107–112, July 2016.
[12] H. Inose, S. Mohri, Y. Yamada, T. Nakamura, K. Yokoyama, and I. Kikutani, “De-
velopment of a lightweight power-assist suit using pneumatic artificial muscles and
balloon-amplification mechanism,” in 2016 14th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 1–6, Nov 2016.
[13] C. Ishii, H. Yamamoto, and D. Takigawa, “Development of a new type of lightweight
power assist suit for transfer work,” in 2015 Asia-Pacific Conference on Computer
Aided System Engineering, pp. 208–213, July 2015.
[14] Y. Imamura, T. Tanaka, Y. Suzuki, K. Takizawa, and M. Yamanaka, “Motion-based
design of elastic belts for passive assistive device using musculoskeletal model,” in
2011IEEEInternationalConferenceonRoboticsandBiomimetics,pp.1343–1348,Dec
2011.
84
參 考 文 獻
[15] WIKIPEDIA, “Powered exoskeleton.” https://en.wikipedia.org/wiki/
Powered_exoskeleton, 2019.
[16] B. Tondu and P. Lopez, “Modeling and control of mckibben artificial muscle robot
actuators,” IEEE Control Systems Magazine, vol. 20, pp. 15–38, April 2000.
[17] T. D. C. Thanh and K. K. Ahn, “Intelligent phase plane switching control of pneumatic
artificial muscle manipulators with magneto-rheological brake,” Mechatronics, vol. 16,
no. 2, pp. 85 – 95, 2006.
[18] D. W. Repperger, K. R. Johnson, and C. A. Philips, “Nonlinear feedback controller
design of a pneumatic muscle actuator system,” in Proceedings of the 1999 American
Control Conference (Cat. No. 99CH36251), vol. 3, pp. 1525–1529 vol.3, June 1999.
[19] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep con-
figurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 11, pp. 333–339, Sep. 2003.
[20] J. H. Lilly and Liang Yang, “Sliding mode tracking for pneumatic muscle actuators
in opposing pair configuration,” IEEE Transactions on Control Systems Technology,
vol. 13, pp. 550–558, July 2005.
[21] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Pneumatic artificial muscles:
Aswitchingmodelpredictivecontrolapproach,”ControlEngineeringPractice,vol.21,
no. 12, pp. 1653 – 1664, 2013.
[22] S. Ganguly, A. Garg, A. Pasricha, and S. Dwivedy, “Control of pneumatic artificial
musclesystemthroughexperimentalmodelling,” Mechatronics, vol.22, no.8, pp.1135
– 1147, 2012.
85
參 考 文 獻
[23] T. V. Minh, T. Tjahjowidodo, H. Ramon, and H. V. Brussel, “Cascade position control
of a single pneumatic artificial muscle–mass system with hysteresis compensation,”
Mechatronics, vol. 20, no. 3, pp. 402 – 414, 2010.
[24] T. Hesselroth, K. Sarkar, P. P. van der Smagt, and K. Schulten, “Neural network con-
trol of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 24, pp. 28–38, Jan 1994.
[25] K. Balasubramanian and K. S. Rattan, “Fuzzy logic control of a pneumatic muscle
system using a linearing control scheme,” in 22nd International Conference of the
North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 432–436,
July 2003.
[26] D. Sasaki and M. Takaiwa, “Development of pneumatic power assist wear to reduce
physical burden,” 2014 IEEE/SICE International Symposium on System Integration,
pp. 626–631, Dec 2014.
[27] D.Sasaki,T.Noritsugu,andM.Takaiwa,“Developmentofpneumaticlowerlimbpower
assist wear driven with wearable air supply system,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4440–4445, Nov 2013.
[28] T. Noritsugu, M. Takaiwa, and D. Sasaki, “Power assist wear driven with pneumatic
rubber artificial muscles,” in 2008 15th International Conference on Mechatronics and
Machine Vision in Practice, pp. 539–544, Dec 2008.
[29] Y. Usui, Y. Nishioka, T. Yasuda, and M. Yamano, “Development of a chained barrel-
shaped elsa for a pneumatic corset aim to prevent a muscle weakening,” in 2017 IEEE
86
參 考 文 獻
International Conference on Mechatronics and Automation (ICMA), pp. 955–960, Aug
2017.
[30] D. Ferris, J. M Czerniecki, and B. Hannaford, “An ankle-foot orthosis powered by ar-
tificial pneumatic muscles,” Journal of Applied Biomechanics, vol. 21, pp. 189–97, 06
2005.
[31] T. Noritsugu, F. Ando, and T. Yamanaka, “Rehabilitation robot using rubber artificial
muscle,” Journal of the Robotics Society of Japan, vol. 13, no. 1, pp. 141–148, 1995.
[32] D. Hoy, C. Bain, G. Williams, L. March, P. Brooks, F. Blyth, A. Woolf, T. Vos, and
R.Buchbinder,“Asystematicreviewoftheglobalprevalenceoflowbackpain,”Arthri-
tis and rheumatism, vol. 64, pp. 2028–37, 06 2012.
[33] 張智星, MATLAB 程式設計入門篇 . 清蔚科技股份有限公司, 2016.
[34] 李宜達, 控制系統設計與模擬 . 全華科技圖書股份有限公司, 2013.
[35] M. Adolphe, J. Clerval, Z. Kirchof, and R. L. Delpech, “Center of mass of human’s
body segments,” Mechanics and Mechanical Engineering, pp. 485–497, 2017.
[36] wikipedia. https://en.wikipedia.org/wiki/Clothing_sizes#
International, 2017.

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 2024/08/26 (校外網路)
全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE