簡易檢索 / 詳目顯示

研究生: 楊季陶
Chi-Tao Yang
論文名稱: 二硫化錸薄膜之雙極式電阻式記憶體
Rhenium Disulfide Based Bipolar Resistive Switching Memory
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 蔡孟霖
Meng-Lin Tsai
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 175
中文關鍵詞: ReS2薄膜電阻式記憶體硫空缺金屬燈絲
外文關鍵詞: Rhenium disulfide (ReS2), Resistive Radom Access Memory (RRAM), Sulfur vacancy, Metallic filament
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以二硫化錸(Rhenium disulfide, ReS2)薄膜為介電層應用於電阻式記憶體,製作Mo/ReS2/Re及Ag/ReS2/Re元件並比較其在電性、傳導機制與切換機制等方面的差異。
Mo/ReS2/Re元件在電性量測時能展現出雙極式的電阻切換行為,須先以較高電壓進行Forming,而後在掃描至負偏壓時 RESET回高電阻態並在正偏壓時 SET至低電阻態。Mo電極直徑為90 μm之元件可循環掃描60次且高低電阻比值(RHRS/RLRS)為7.3倍;而電極直徑為54 μm及37 μm之元件可循環掃描20次且RHRS/RLRS分別可達到83倍及112倍。以上元件在HRS時皆符合Schottky emission而在LRS時則符合Ohmic。在不同電極面積測試中HRS的電阻值會隨電極面積增加而減少,LRS的電阻值則不隨電極面積改變,說明在LRS是藉由導電燈絲來進行傳導。在升溫測試中HRS的電阻值會隨溫度升高而下降,為半導體特性;LRS的電阻值則會隨溫度升高而增加,為金屬特性,計算之α值與硫空缺較為接近,因此推測此元件在LRS時是以硫空缺作為主要導電燈絲路徑。
Ag/ReS2/Re元件在電性量測時也具有雙極式的電阻切換行為,同樣須先以較高電壓進行Forming,掃描至負偏壓時 RESET回高電阻態並在正偏壓 SET至低電阻態。Ag電極直徑為90 μm之元件可循環掃描50次且RHRS/RLRS為3.6倍;而電極直徑為54 μm及37 μm之元件可循環掃描20次且RHRS/RLRS分別可達到12倍及18倍。以上元件在HRS時皆符合Schottky emission而在LRS時則符合Ohmic。在不同電極面積測試中HRS的電阻值會隨電極面積增加而減少;在LRS時電阻值則不隨電極面積改變,說明在LRS是藉由導電燈絲來進行傳導。在升溫測試中HRS的電阻值會隨溫度升高而下降,為半導體特性;LRS的電阻值則會隨溫度升高而增加,為金屬特性,計算之α值與Ag較為接近,因此推測此元件在LRS時是以Ag金屬燈絲作為主要導電燈絲路徑。


This study focus on the application of rhenium disulfide (ReS2) thin films as dielectric layer in resistive memory device. Mo/ReS2/Re and Ag/ReS2/Re devices were fabricated and their electrical properties, conduction mechanisms and switching mechanisms are compared.
The Mo/ReS2/Re device can exhibit bipolar resistive switching behavior and requiring a high voltage for forming first. The RESET process occur at negative bias while the SET process occur at positive bias. The device with a Mo electrode of 90 μm in diameter can switch 60 cycles with RHRS/RLRS of 7.3. The devices with electrode diameter of 54 μm and 37 μm can switch 20 cycles with RHRS/RLRS of 83 and 112, respectively. In HRS, all these devices follow Schottky emission while in LRS follow Ohmic conduction. The resistance in HRS decreased with increasing electrode area, however the resistance in LRS was independent with the electrode area, suggesting that conduction in LRS is through a conductive filament. In the temperature-dependent test, the resistance in HRS decrease with increasing temperature, indicating semiconductor characteristic, while the resistance in LRS increase with increasing temperature, indicating metallic characteristic. The calculated α value is close to the sulfur vacancy, suggesting that the dominant conduction path in the LRS is through sulfur vacancies.
Similarly, the Ag/ReS2/Re device also exhibit bipolar resistive switching behavior and also requiring a high voltage for forming first. The RESET process occur at negative bias while the SET process occur at positive bias. The device with an Ag electrode diameter of 90 μm can scan 50 cycles with RHRS/RLRS ratio of 3.6. The devices with electrode diameter of 54 μm and 37 μm can scan 20 cycles with RHRS/RLRS of 12 and 18, respectively. Similar to the Mo electrode device, the Ag electrode device exhibit Schottky emission in HRS and Ohmic conduction in LRS. The resistance in HRS decrease with increasing electrode area while in LRS the resistance is independent with the electrode area, suggesting conduction through a conductive filament. In the temperature-dependent test, the resistance in HRS decrease with increasing temperature, indicating semiconductor characteristic, while the resistance in LRS increase with increasing temperature, indicating metallic characteristic. The calculated α value is close to Ag, suggesting that the dominant conduction path in the LRS is through Ag metal filament.

摘要.......................................I Abstract ……………………………………………………………………………….II 目錄…………………………………………………………………………………..IV 圖目錄……………………………………………………………………………...VIII 表目錄………………………………………………………………………………XV 第一章 前言…………………………………………………………………………..1 第二章 文獻回顧……………………………………………………………………..2 2.1記憶體簡介……………………………………………………………………..2 2.1.1鐵電式記憶體(Ferroelectric Random Access Memory, FRAM)………….3 2.1.2相變化式記憶體(Phase-Change Random Access Memory, PRAM)……...3 2.1.3磁阻式記憶體(Magnetoresistive Random Access Memory, MRAM)…….4 2.1.4電阻式記憶體(Resistive Random Access Memory, RRAM)……………...4 2.1.4a單極式電阻切換(Unipolar Resistive Switching)……………………...6 2.1.4b雙極式電阻切換(Bipolar Resistive Switching)……………………….6 2.2電阻式記憶體之電阻切換機構……………………………………………….7 2.2.1導電燈絲機構(Filamentary Conducting Path)……………………………7 2.2.1a金屬聚集燈絲…………………………………………………………8 2.2.1b氧空缺燈絲……………………………………………………………8 2.2.2離子遷徙機構(Ionic Migration)…………………………………………..9 2.2.3界面型導電機構(Interface-type Conducting Path)………………………10 2.3漏電流導電機制………………………………………………………………13 2.3.1歐姆接觸(Ohmic Contact)………………………………………………..13 2.3.2普爾-法蘭克發射(Poole-Frenkel Emission)……………………………...15 2.3.3空間電荷限制傳導(Space-Charge-Limited Current, SCLC)…………….16 2.3.4蕭特基發射(Schottky Emission)…………………………………………17 2.3.5傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling, FNT)………………….18 2.4 ReS2之電阻切換相關研究…………………………………………………...20 2.4.1 ReS2薄膜之基本性質……………………………………………………20 2.4.2 ReS2薄膜製備之相關研究………………………………………………21 2.4.3金屬硫化物作為電阻層之相關研究…………………………………….22 2.4.4 ReS2薄膜作為電阻層之相關研究………………………………………29 2.5研究動機………………………………………………………………………39 第三章 實驗方法與實驗儀器………………………………………………………40 3.1 實驗耗材與藥品規格………………………………………………………...40 3.2實驗流程………………………………………………………………………41 3.2.1 基板清洗…………………………………………………………………42 3.2.2 製備Re下電極………………………………………………………….43 3.2.3 製備ReS2絕緣層………………………………………………………..43 3.2.4 Ar/H2微波電漿去硫化處裡形成下電極探針接點……………………...44 3.2.5 製備金屬上電極…………………………………………………………44 3.3 實驗儀器與儀器原理………………………………………………………...47 3.3.1 實驗儀器與儀器規格……………………………………………………47 3.3.2磁控式濺鍍系統………………………………………………………….47 3.3.3 高溫管狀爐系統…………………………………………………………48 3.3.4 微波電漿系統……………………………………………………………49 3.4分析儀器與儀器原理…………………………………………………………50 3.4.1分析儀器與儀器規格…………………………………………………….50 3.4.2 X射線光電子能譜儀(X-ray Photoelectron Spectrometer, XPS)………..51 3.4.3紫外光光電子能譜儀(Ultraviolet Photoelectron Spectrometer, UPS)…..52 3.4.4紫外光-可見光分光光譜儀(UV-Vis)…………………………………….54 3.4.5顯微拉曼光譜儀(Micro-Raman spectrometer)…………………………..55 3.4.6 X光繞射儀(X-ray diffractometer)……………………………………….56 3.4.7場發射掃描式電子顯微鏡(Field Emission Scanning Electron FESEM)..57 3.4.8場發射雙束型聚焦離子束顯微鏡(Dual Beam Focused Ion Beam, FIB).59 3.4.9場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FETEM)……………………………………………………59 3.4.10原子力顯微鏡(Atomic Force Microscope, AFM)………………………60 3.4.11螢光光譜分析儀(Photoluminescence Spectrometer, PL)……………….61 3.4.12直流電源電錶儀(DC power supply)……………………………………62 第四章 結果與討論…………………………………………………………………63 4.1 ReS2薄膜之材料性質分析…………………………………………………...63 4.1.1 ReS2薄膜之Raman分析結果…………………………………………...63 4.1.2 ReS2薄膜之XRD分析結果……………………………………………..64 4.1.3 ReS2薄膜之XPS分析結果……………………………………………...64 4.1.4 ReS2薄膜之UPS分析結果……………………………………………...68 4.1.5 ReS2薄膜之UV-Vis分析結果…………………………………………..70 4.1.6 ReS2薄膜之PL分析結果……………………………………………….71 4.1.7 ReS2薄膜之能帶結構……………………………………………………72 4.1.8 ReS2薄膜之AFM分析結果…………………………………………….73 4.1.9 ReS2薄膜之FE-SEM分析結果…………………………………………74 4.1.10 ReS2薄膜之FE-TEM分析結果………………………………………..75 4.2 Mo/ReS2/Re結構之電阻式記憶體元件分析………………………………...77 4.2.1 Mo/ReS2/Re元件之下電極探針接點拉曼分析…………………………77 4.2.2 Mo/ReS2/Re元件之FE-SEM截面結構分析……………………………77 4.2.3 Mo/ReS2/Re元件之XPS縱深分析……………………………………..78 4.2.4 Mo/ReS2/Re元件之HRTEM截面結構分析……………………………93 4.2.5 Mo/ReS2/Re元件之半導體電性分析……………………………………94 4.2.5.1a 200mesh Mo/ReS2/Re元件之I-V特性曲線分析…………………95 4.2.5.1b 200mesh Mo/ReS2/Re元件之電荷傳導機制分析………………...96 4.2.5.2a 300mesh Mo/ReS2/Re元件之I-V特性曲線分析…………………97 4.2.5.2b 300mesh Mo/ReS2/Re元件之電荷傳導機制分析………………...99 4.2.5.3a 400mesh Mo/ReS2/Re元件之I-V特性曲線分析………………..100 4.2.5.3b 400mesh Mo/ReS2/Re元件之電荷傳導機制分析……………….101 4.2.5.4 Mo/ReS2/Re元件之電阻切換機構探討…………………………...105 4.3 Ag/ReS2/Re結構之電阻式記憶體元件分析………………………………..108 4.3.1 Ag/ReS2/Re元件之下電極探針接點拉曼分析………………………...108 4.3.2 Ag/ReS2/Re元件之FE-SEM截面結構分析…………………………..108 4.3.3 Ag/ReS2/Re元件之XPS縱深分析…………………………………….108 4.3.4 Ag/ReS2/Re元件之HRTEM截面結構分析…………………………...123 4.3.5 Ag/ReS2/Re元件之半導體電性分析…………………………………...124 4.3.5.1a 200mesh Ag/ReS2/Re元件之I-V特性曲線分析………………...125 4.3.5.1b 200mesh Ag/ReS2/Re元件之電荷傳導機制分析………………..126 4.3.5.2a 300mesh Ag/ReS2/Re元件之I-V特性曲線分析………………...127 4.3.5.2b 300mesh Ag/ReS2/Re元件之電荷傳導機制分析………………..129 4.3.5.3a 400mesh Ag/ReS2/Re元件之I-V特性曲線分析………………...129 4.3.5.3b 400mesh Ag/ReS2/Re元件之電荷傳導機制分析………………..131 4.3.5.4 Ag/ReS2/Re元件之電阻切換機構探討……………………………136 4.4 Mo/ReS2/Re元件與Ag/ReS2/Re元件之比較……………………………...138 第五章 結論………………………………………………………………………..140 第六章 未來展望…………………………………………………………………..142 第七章 參考文獻…………………………………………………………………..143 附錄…………………………………………………………………………………155

[1] 陳俊甫、陳榮方,強棒計算機概論,文聯出版社,1998。
[2] 張御琦,記憶體是什麼? 3分鐘看懂電腦記憶體和硬碟的不同之處,遊戲基 地新聞,2022。
[3] 新智元,FinFET:讓摩爾定律多活20年,還讓台積電成為半導體霸主的關鍵技術,科技報橘,2021。
[4] 王永和,新興3D RRAM架構及其應用,科技新報,2022。
[5] 拓墣產業研究所,韓國次世代非揮發性記憶體發展現況與策略,拓墣科技,2007。
[6] J. L. Moll and Y. Tarui, A new solid state memory resistor, IEEE Transactions On Electron Devices 10 (1963) 338.
[7] M. Muneeb, I. Akram and A. Nazir, Non-volatile random access memory technologies (MRAM, FRAM, PRAM), Smart Electronic Materials 6 (2006) 1.
[8] A. K. Tagantsev, I. Stolichnov, E. L. Colla and N. Setter, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios and microscopic features, Journal of Applied Physics 90 (2001) 1387.
[9] S. Kim, J. Koo, S. Shin and Y. Park, Improvement of retention loss in Pb(Zr,Ti)O3 capacitors using Ir/SrRuO3 top electrodes, Applied Physics Letters 87 (2005) 212910.
[10] 葉林秀、李佳謀、徐明豐、吳德和,磁阻式隨機存取記憶體技術的發展-現在與未來,中華民國物理學會之物理雙月刊,2004。
[11] F. Zahoor, T. Z. A. Zulkifli and F. A. Khanday, Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell storage, modeling and applications, Nanoscale Research Letters 15 (2020) 11671.
[12] T. W. Hickmott, Low‐frequency negative resistance in thin anodic oxide films, Journal of Applied Physics 33.9 (1962) 2669-2682.
[13] Y. C. Chen, Y. F. Chang, X. Wu, F. Zhou, M. Guo and C. Y. Lin, Dynamic conductance characteristics in HfO2 based resistive random access memory, Royal Society of Chemistry 21 (2017) 12984.
[14] S. X. Chen, S. P. Chang, S. J. Chang, W. K. Hsieh and C. H. Lin, Highly stable ultrathin TiO2-based resistive random access memory with low operation voltage, Journal of Solid State Science and Technology 7 (2018) 3183.
[15] A. Prakash, D. Deleruyelle, J. Song, M. Bocquet and H. Hwang, Resistance controllability and variability improvement in a TaOx-based resistive memory for multilevel storage application, Applied Physics A 106 (2015) 233104.
[16] Y. Gu, M. I. Serna, S. Mohan, L. C. Alejandra, T. Ahmed, Y. Huang, J. Lee, S. Walia, M. P. Pettes, K. M. Liechti and D. Akinwande, Sulfurization engineering of one-step low-temperature MoS2 and WS2 thin films for memristor device applications, Advanced Electronic Materials 8 (2022) 2100515.
[17] M. N. Kozicki, M. Park and M. Mitkova, Nanoscale memory elements based on solid-state electrolytes, IEEE Transactions on Nanotechnology 3 (2005) 331-338.
[18] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono, Nanometer-scale switches using copper sulfide, Applied Physics Letters 18 (2003) 3032-3034.
[19] V. K. Perla, S. K. Ghosh and K. Mallick, Bipolar resistive switching behavior of carbon nitride supported copper oxide nanoparticles, Chemical Physics Letters 754 (2020) 137650.
[20] J. Y. Son and Y. H. Shin, Direct observation of conducting filaments on resistive switching of NiO thin films, Applied Physics Letters 92 (2008) 222106.
[21] Y. M. Kim and J. S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices, Journal of Applied Physics 104 (2008) 114115.
[22] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong and C. S. Hwang, Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures, Electrochmical & Solid-State Letters 9 (2006) 343-346.
[23] A. Sawa, B. Akihito, Resistive switching in transition metal oxides, Materials Today 11 (2008) 28-36.
[24] C. Waser and D. Rainer, Redox‐based resistive switching memories–nanoionic mechanisms, prospects and challenges, Advanced Materials 21 (2009) 2632-2663.
[25] M. H. Lu, Z. Q. Wang, H. Y. Xu, Z. Lei, X. N. Zhao, M. S. Han, J. G. Ma and Y. C. Liu, Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments, Chinese Physics B 25 (2016) 127303.
[26] M. N. Kozicki and H. J. Barnaby, Conductive bridging random access memory—materials, devices and applications, Semiconductor Science and Technology 31 (2016) 113001.
[27] I. Valov, R. Waser, J. R. Jameson M. N. Kozicki, Electrochemical metallization memories—fundamentals, applications and prospects, Nanotechnology 22 (2011) 254003.
[28] L. Goux and I. Valov, Electrochemical processes and device improvement in conductive bridge RAM cells. Physic Status Solid (A) 213 (2016) 274–288.
[29] Y. Huang, Z. Shen, Y. Wu, X. Wang, S. Zhang and X. Shi, Amorphous ZnO based resistive random access memory. Royal Society of Chemistry 6 (2016) 17867–17872.
[30] J. Fu, M. Hua and S. Ding, Stability and its mechanism in Ag/CoOx/Ag interface-type resistive switching device, Scientific Report 6 (2016) 35630.
[31] W. G. Kim and S. W. Rhee, Effect of the top electrode material on the resistive switching of TiO2 thin film, Microelectronic Engineering 87 (2010) 98-103.
[32] L. Liu, Y. Wang, W. Chen, S. Ren, J. Guo, X. Kang and X. Zhao, Robust resistive switching in MoS2-based memristor with Ti top electrode, Applied Surface Science 605 (2022) 154698.
[33] N. Stavitski, M. J. H. Van Dal, R. A. M. Wolters, A. Y. Kovalgin and J. Schmitz, Specific contact resistance measurements of metal-semiconductor junctions, IEEE International Conference on Microelectronic Test Structures 3 (2006) 13-17.
[34] G. Greco, F. Iucolano and F. Roccaforte, Ohmic contacts to Gallium Nitride materials, Applied Surface Science 383 (2016) 324-345.
[35] F. L. Via, F. Roccaforte and V. Raineri, Ohmic contacts to SiC, International Journal of High Speed Electronics and Systems 15 (2004) 77-116.
[36] Q. F. Pan and Q. Liu, Poole–Frenkel emission saturation and its effects on
time-to-failure in Ta-Ta2O5-MnO2 capacitors, Advances in Materials Science and Engineering 9 (2019) 1690378.
[37] W. R. Harrell and J. Frey, Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films, Thin Solid Films 352 (1999) 195-204.
[38] P. N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect, Journal of Physics D: Applied Physics 308 (1970) 151-156.
[39] R. Wang, H. Li, L Zhang, Y. J. Zeng, Z. Lv, J. Q. Yang, J. Y. Mao, Z. Wang, Y. Zhou and S. T. Han, Graphitic carbon nitride nanosheets for solution
processed non-volatile memory devices, Journal of Materials Chemistry C 7 (2019) 10203.
[40] E. W. Lim and R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey, Electronics 4 (2015) 586-613.
[41] J. Nicholls, S. Dimitrijev, P. Tanner and J. Han, Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes, Scientific Reports 9 (2019) 3754.
[42] F. C. Chiu, A review on conduction mechanisms in dielectric films, Advances in Materials Science and Engineering 2 (2014) 578168.
[43] Y. Huang, Y. Gu, X. Wu, R. Ge, Y. F. Chang, X. Wang, J. Zhang, D. Akinwande and J. C. Lee, ReSe2-Based RRAM and Circuit-Level Model for Neuromorphic Computing, Nanotechnology 3 (2021) 782836.
[44] N. Al-Dulaimi, D. J. Lewis, X. L. Zhong, M. A. Malik and P. O’Brien, Chemical vapor deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors, Journal of Materials Chemistry C 4 (2016) 2312-2318.
[45] J. Hämäläinen, M. Mattinen, K. Mizohata, K. Meinander, M. Vehkamäki, J. Räisänen, M. Ritala and M. Leskelä, Atomic layer deposition of rhenium disulfide, Advanced Materials 30 (2018) 1703622.
[46] B. Vishal, H. Sharona, U. Bhat, A. Paul, M. B. Sreedhara, V. Rajaji, S. C. Sarma, C. Narayana, S. C. Peter and R. Datta, Growth of ReS2 thin films by pulsed laser deposition, Thin Solid Films 685 (2019) 81-87.
[47] E. Butanovs, A. Kuzmin, S. Piskunov, K. Smits, A. Kalinko and B. Polyakov, Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/ shell nanowire heterostructures, Applied Surface Science 536 (2021) 147841.
[48] X. Huang, L. Deng, Z. Guo, N. Luo, J. Liu, Y. Zhao, Z. Liu and A. Wei, Layer-dependent electrical transport property of two-dimensional ReS2 thin films, Journal of Materials Science: Materials in Electronics 32 (2021) 24342–24350.
[49] K. Keyshar, G. Ye, K. Hackenberg, Y. He, M. Kabbani, A. H. C. Hart, B. Li, A. George, R. Vajtai, C. S. Tiwary and P. M. Ajayan, Chemical vapor deposition of monolayer rhenium disulfide (ReS2), Advanced Materials 27 (2015) 4640-4648.
[50] N. Urakami, T. Okuda and Y. Hashimoto, Epitaxial growth of ReS2(001) thin film via deposited-Re sulfurization, Japanese Journal of Applied Physics 57 (2018) 02CB07.
[51] Y. Gu, M. I. Serna, S. Mohan, L. C. Alejandra, T. Ahmed, Y. Huang, J. Lee, S. Walia, M. P. Pettes, K. M. Liechti and D. Akinwande, Sulfurization engineering of one-step low-temperature MoS2 and WS2 thin films for memristor device applications, Advanced Electronic Materials 8 (2022) 2100515.
[52] L. Liu, Y. Wang, W. Chen, S. Ren, J. Guo, X. Kang and X. Zhao, Robust resistive switching in MoS2-based memristor with Ti top electrode, Applied Surface Science 605 (2022) 154698.
[53] S. Li, B. Li, X. Feng, L. Chen, Y. Li, L. Huang, X. Fong and K. W. Ang, Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing, Nature Partner Journals 2D Materials and Applications 1 (2021) 41699.
[54] M. E. Pam, S. Li, T. Su, Y. C. Chien, Y. Li, Y. S. Ang and K. W. Ang, Interface-modulated resistive switching in Mo-irradiated ReS2 for neuromorphic computing, Advanced Materials 34 (2022) 2202722.
[55] M. P. Seah, The Quantitative Analysis of Surfaces by XPS: A Review, Surface and Interface Analysis 2 (1980) 199-243.
[56] O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu and R. E. Smalley, Ultraviolet photoelectron spectroscopy of semiconductor clusters: Silicon and germanium, Chemical Physics Letters 138 (1987) 119-124.
[57] F. S. Rocha, A. J. Gomes, C. N. Lunardi, S. Kaliaguine and G. S. Patience, Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV-Vis, Canadian Journal of Chemical Engineering 96 (2018) 2512-2517.
[58] S. K. Najaf Abadi, S. I. Hosseini, M. Momeni and H. Khaksaran, Studying the effects of plasma produced species on the optical characteristics and bonding structure of diamond-like carbon films deposited by direct current unbalanced magnetron sputtering, Materials Chemistry and Physics 229 (2019) 348-354.
[59] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Physical Review B 37 (1988) 10244-10248.
[60] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, Raman Spectroscopy, Analytical Chemistry 70 (1998) 341-361.
[61] A. Chauhan and P. Chauhan, Powder XRD Technique and its Applications in Science and Technology, Journal of Analytical & Bioanalytical Techniques 5 (2014) 1000212.
[62] M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova, J. Tucek, J. Nebesarova and R. Zboril, Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells, Micron 67 (2014) 149-154.
[63] C. A. Volkert and A. M. Minor, Focused ion beam microscopy and micromachining, MRS Bulletin 32 (2007) 389-399.
[64] M. Winey, J. B. Meehl, E. T. O'Toole and T. H. Giddings, Conventional transmission electron microscopy, Molecular Biology of the Cell 25 (2014) 319-323.
[65] F. J. Giessibl, Advances in atomic force microscopy, Reviews of Modern Physics 75 (2003) 949-983.
[66] N. A. Dulaimi, D. J. Lewis, X. L. Zhong, M. A. Malik and P. O’Brien, Chemical vapor deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors, Journal of Materials Chemistry C 4 (2016) 2312-2318.
[67] Y. Yan, K. Y. Song, M. Cho, T. H. Lee, C. Kang and H. J. Lee, Ultra-thin ReS2 nanosheets grown on carbon black for advanced lithium-ion battery anodes, Materials 12 (2019) 1563.
[68] A. Duhina, A. Rozenblat-Raz, L. Bursteinc, A. Inberg, D. Horvitz, Y. Shacham-Diamandd, N. Eliaz and E. Gileadi, Growth study of nanoscale Re–Ni coatings on functionalized SiO2 using electroless plating, Applied Surface Science 313 (2014) 159-165.
[69] Y. Lian, W. Xin, M. Zhang, Y. Li, L. Yang, Y. Guo and S. Xu, Low-content Ni-doped CoS2 embedded within N,P-codoped biomass-derived carbon spheres for enhanced lithium/sodium storage, Journal of Materials Science 54 (2019) 8504-8514.
[70] A. Dolgov, D. Lopaev, C. J. Lee, E. Zoethout, V. Medvedev, O. Yakushev and F. Bijkerk, Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source, Applied Surface Science 353 (2015) 708-713.
[71] S. Manna, S. Kumar, A. Sharma, S. Sahoo, M. K. Dey, P. K. Mishra and A. K. Satpati, rGO/ReO3 nano composite modified electrode for the ultra-sensitive determination of dopamine and uric acid, Biosensors and Bioelectronic: X 11 (2022) 100156.
[72] A. J. Gomes, C. N. Lunardi, F. S. Rocha and G. S. Patience, Experimental methods in chemical engineering: Fluorescence emission spectroscopy, Canadian Journal of Chemical Engineering 97 (2019) 2168-2175.
[73] S. Seo, J. J. Lee, R. G. Lee, T. H. Kim, S. Park, S. Jung, H. K. Lee, M. Andreev, K. B. Lee, K. S. Jung, S. Oh, H. J. Lee, K. S. Kim, G. Y. Yeom, Y. H. Kim and J. H. Park, An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network, Advanced Material 33 (2021) 2102980.
[74] V. Naumkin, K. V. Anna, S. W. Gaarenstroom and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, National Institute of Standards and Technology (NIST) Material Measurement Laboratory, 2012.
[75] S. Hussain, J. Singh, D. Vikraman, A. K. Singh, M. Z. Iqbal, M. F. Khan, P. Kumar, D. C. Choi1, W. Song, K. S. An, J. Eom, W. G. Lee and J. Jung, Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method, Scientific Report 6 (2016) 30791.
[76] A. Ghiami, M. Timpel, A. Chiappini, M. V. Nardi and R. Verucchi, Synthesis of MoS2 thin film by ionized jet deposition: role of substrate and working parameters, Surfaces 3 (2020) 683-693.
[77] B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu,Y. Zhao, Z. Cheng and Y. Lu, Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water, Scientific Reports 7 (2017) 11182.
[78] J. Aliaga, P. Vera, J. Araya, L. Ballesteros, J. Urzúa, M. Farías, P. D. Francisco, G. A. Núñez, G. González and E. Benavente, Electrochemical hydrogen evolution over hydrothermally synthesized Re-doped MoS2 flower-like microspheres, Molecules 24 (2019) 4631.
[79] J. Liu, F. Qi, N. Zhang, J. Yang, Z. Liang, C. Tian, W. Zhang, X. Tang, D. Wu and Q. Huang, Three-dimensional structural ReS2@Cu2O/Cu heterojunction photocatalysts for visible-light-driven CO2 reduction, Journal of Materials Science 57 (2022) 15474-15487.
[80] J. Xu, C. Fang, Z. Zhu, J. Wang, B. Yua and J. Zhang, Nanoscale engineering and Mo-doping of 2D ultrathin ReS2 nanosheets for remarkable electrocatalytic hydrogen generation, Nanoscale 12 (2020) 17045-17052.
[81] L. Liu, M. Kong, Y. Xing, Z. Wu and Y. Chen, Atomic layer deposition-made MoS2–ReS2 nanotubes with cylindrical wall heterojunctions for ultrasensitive MiRNA-155 detection, ACS Applied Materials & Interfaces 14 (2022) 10081-10091.
[82] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell and J. R. Rumble, NIST Standard Reference Database 20, National Institute of Standards and Technology (NIST) Material Measurement Laboratory, 2003.
[83] D. A. Zatsepin, D. W. Boukhvalov, A. F. Zatsepin, A. N. Mikhaylov, N. N. Gerasimenko and O. A. Zaporozhan, Effect of long-term storage on the electronic structure of semiconducting silicon wafers implanted by rhenium ions, Journal of Materials Science 56 (2017) 2103-2112.
[84] Q. Lin, X. Dong, Y. Wang and T. Ding, Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution, Journal of Materials Science 55 (2020) 6637-6647.
[85] M. Li, L. Zeng, Y. Chen and H. Shen, Realization of Colored Multi crystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings, International Journal of Photoenergy 6 (2013) 352473.
[86] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell and J. R. Rumble, NIST Standard Reference Database 20, National Institute of Standards and Technology (NIST) Material Measurement Laboratory, 2003.
[87] B. Ofuonye, J. Lee, M. Yan, C. Sun, J. M. Zuo and I. Adesida, Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures, Semiconductor Science and Technology 29 (2014) 095005.
[88] R. A. Holmwood and R. Glang, Resistivity and temperature coefficient of pure molybdenum, Journal of Chemical and Engineering Data 10 (2002) 162-163.
[89] X. Zhao, Z. Fan, H. Xu, Z. Wang, J. Q. Xu, J. Ma and Y. Liu, Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory, Journal of Materials Chemistry C 00 (2013) 1-3.
[90] L. Wu, A. Longo, N. Y. Dzade, A. Sharma, M. M. R. M. Hendrix, A. A. Bol, N. H. Leeuw, E. J. M. Hensen and J. P. Hofmann, The origin of high activity of amorphous MoS2 in the hydrogen evolution reaction, ChemSusChem 12 (2019) 4383-4389.
[91] Z. Lei, J. Zhan, L. Tang, Y. Zhang and Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage, Advanced Energy Materials 8 (2018) 1703482.
[92] R. Ding, M. Wang, X. Wang, H. Wang, L. Wang, Y. Mu and B. Lv, N-Doped amorphous MoSx for the hydrogen evolution reaction, Nanoscale 23 (2019) 11217-11226.
[93] M. Krbal, J. Prikryl, L. Pis and A. V. Kolobov, Anomalous electrical conductivity change in MoS2 during the transition from the amorphous to crystalline phase, Ceramics International 49 (2022) 2619-2625.
[94] P. K. Parashar and V. K. Komarala, Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells, Scientific Reports 7 (2017) 17520.
[95] M. Uda, A. Nakamura, T. Yamamoto and Y. Fujirnoto, Work function of polycrystalline Ag, Au and A1, Journal of Electron Spectroscopy and Related Phenomena 88 (1998) 643-648.
[96] Z. Cui, F. R. Poblete and Y. Zhu, Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors, ACS Applied Materials & Interfaces 19 (2019) 17836-17842.

無法下載圖示 全文公開日期 2025/08/15 (校內網路)
全文公開日期 2025/08/15 (校外網路)
全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE