簡易檢索 / 詳目顯示

研究生: 陳秉謙
Ping-Chien Chen
論文名稱: 探討高價鉬與鎳鐵間的協同作用對於電催化產氧反應的影響
Unravelling the synergetic effect of high-valance molybdenum with nickel and iron towards the oxygen evolution reaction performance
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 鄭淑芬
Soo-Fin Cheng
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 電化學深共融溶劑電鍍產氧反應原位拉曼
外文關鍵詞: DES, Operando Raman
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有許多研究指出NiFe觸媒與Ni觸媒相比在產氧反應(oxygen evolution reaction, OER)的效率有倍數級的提升,而最近的研究更是指出把Mo加入NiFe中會讓效率更好,不過協同作用原理仍然未知。這是因為不同Mo組成所造成的內在活性在過去的文獻中產生衝突,所以目前鉬與第一排過度金屬的作用仍未知。因此我們通過調節電鍍液中NiFeMo的比例,並在銅箔上進行電沉積,製備了不同成分NiFeMox觸媒。 Mo組成為9%至26%,標示為NiFeMo1.5〜NiFeMo5.5。本研究中,我們將NiFeMo觸媒與NiFe觸媒對OER的活性進行比較,結果表明NiFeMo3.5和NiFeMo2.5的活性更好,而NiFeMo4.5具有與NiFe相似的Tafel斜率和起始電位。在這裡我們通過X射線光電子能譜 (XPS)、X光繞射圖譜 (XRD) 、掃描電子顯微鏡 (SEM)、掃描透射電子顯微鏡 (STEM)、高解析穿透式電子顯微鏡(HRTEM)和拉曼(Raman)光譜分析觸媒的表面性質。在電沉積的過程中Mo6+的參與,將促進Ni氧化成Ni2+,Fe氧化成Fe3+,並使成長的晶粒尺寸變小,結晶度上升。因為Mo是一種通用的配位體,所以Mo6+吸引電子形成Mo4+同時讓Ni和Fe氧化成Ni2+和Fe3+而且使得Fe3+的結合能上升。為了揭示加入鉬對OER的影響,我們進行的原位拉曼光譜,鉬會在OER之前先被氧化並發生重組,形成MoO6 (八面體結構) 和MoO42- (四面體結構)。 MoO6會與FeO6共享氧邊緣並使其不穩定。另一方面,MoO42-將與NiO6和FeO6鍵結,使Ni-O 和Fe-O產生扭曲,同時Mo傾向吸收電子將使Ni更容易氧化成Ni2+和Ni3+同時調節Ni2+/Ni3+的氧化還原電位,使NiFeMo羥基氧化物更容易生成。這表示MoO42-可以調節Fe-O和Ni-O的鍵結強度促使高價態的Fe3+和Ni3+更穩定,進而最適化OER中間體的吸附能。所以NiFeMo觸媒展現了良好的內在活性並且降低起始電位至1.47 V vs. RHE和Tafel斜率至42 mV/dec。


    NiFeMo has been an attract catalyst for oxygen evolution reaction (OER), molybdenum shown the synergetic effect with first row 3d metal and enhances the water splitting efficiency. But the role of Mo has remained under debate. Due to the intrinsic effect of different composition of Mo based catalysts conflicted in the past report. So, we fabricate different compositions of NiFeMox catalysts by electrodeposition on Cu foils via modulated the ratio of Ni, Fe and Mo in the electrolytes. Mo compositions were from 9 % to 26 % assign to NiFeMo1.5 ~ NiFeMo5.5. The OER activity was compared to NiFe catalysts, which shown that NiFeMo3.5 and NiFeMo2.5 enhances the activity of OER and NiFeMo4.5 has the similar Tafel slope and onset potential with NiFe. Here we investigated the pre-catalyst surface properties by X- ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray diffraction (XRD), scanning transmission electron microscope (STEM), high resolution transmission electron microscope (HRTEM), and Raman spectra. Accompanying Mo6+ in the deposition process, promoting the Ni oxidized to Ni2+ and Fe oxidized to Fe3+ and the particles size become smaller and the crystallinity increase. Due to, Mo is a versatile coordination host, which draws in the electrons to formed Mo4+ and enhance the both Ni2+ and Fe3+ valance state. To revealing the role of Mo toward OER. We conduct the operando – Raman, Mo will be oxidized first before the OER and occurred the reorganization formed the MoO6 (octahedral structure) and MoO42- (tetrahedral structure). MoO6 will share the oxygen edge with FeO6 and destabilized it. On the other hand, MoO42- will bond with Ni and Fe, which will distorted the Ni-O and Fe-O, meanwhile Mo withdraws the electrons and promoting Ni oxidized to Ni2+ and Ni3+ and modulates the redox of Ni2+/Ni3+, leading the formation of the NiFeMo(oxy)hydroxide. It represents that MoO42- modulates Fe-O and Ni-O bond strength and stabilized the Fe3+ and Ni3+ and results in optimizing the adsorption energy of OER intermediates and lower onset potential and Tafel slope. NiFeMo3.5 show the onset potential at 1.47 V vs. RHE, and Tafel slope equal to 42 mV/dec.

    目錄 中文摘要 I ABSTRACT II 目錄 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻回顧 4 2.1 氫能的現況 4 2.1.1 氫氣的製備 4 2.2 電解水產氫 7 2.2.1 鹼性環境中的反應機制 7 2.2.2 產氧反應之活性描述子 (Activity descriptor) 9 2.2.3 產氧反應之活性指標 (Activity metrics) 12 2.3 觸媒的選擇與反應機制 13 2.3.1 NiFe的反應機制 13 2.3.2 Mo的功能 20 2.3.3 Mo相關觸媒的製備 23 2.3.4 水相電鍍 NiMo、FeMo、NiFe 和NiFeMo 24 2.4 Deep eutectic solvent 25 2.4.1 DES 的簡史 25 2.4.2 DES的簡介 26 2.4.3 DES中電鍍參數 29 2.4.4 金屬在DES中的電鍍 33 第三章 實驗方法 34 3.1 實驗架構 34 3.2 實驗藥品、材料、設備及分析儀器 35 3.3 溶液及觸媒的製備 38 3.4 材料分析 40 3.4.1 UV- 可見光分析儀 (UV-Vis spectroscopy, UV) 40 3.4.2 X光繞射儀 (X-ray diffractometer, XRD) 40 3.4.3 場效發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FE SEM) 41 3.4.4 能量散射X-射線光譜(Energy-dispersive X-ray spectroscopy, EDS) 41 3.4.5 高解析穿透式電子顯微鏡與選擇區域電子繞射(High resolution transmission electron microscopy, HRTEM) 42 3.4.6 掃描穿透式電子顯微鏡(Scanning transmission electron microscopy, STEM) 42 3.4.7 聚焦離子束與電子束顯微系統 (Focused ion beam, FIB) 43 3.4.8 應耦合電漿原子發射光譜儀 (Inductively coupled plasma optical emission spectroscopy, ICP ) 43 3.4.9 拉曼光譜分析 (Raman spectroscopy) 44 3.4.10 X射線光電子能譜 (X-ray photoelectron spectroscopy, XPS) 44 3.5 電化學分析 46 3.5.1 電化學基本原理 46 3.5.2 電化學參數 48 3.5.3 循環伏安掃描法 (Cyclic voltammetry, CV ) 48 3.5.4 線性伏安掃描法 (Linear sweep voltammetry, LSV) 49 3.5.5 電化學交流阻抗譜 (Electrochemical impedance spectra, EIS) 51 3.5.6 電化學活性表面積 (Electrochemical surface area, ECSA) 52 3.5.7 計時電位法 (Chronopotentiometry) 53 3.6 操作條件下的拉曼光譜分析 (Operando Raman spectra) 53 第四章 結果與討論 56 4.1 DES中複合物的分析 56 4.1.1 UV- 可見光分析儀(UV-visible spectroscopy, UV) 56 4.2 電鍍參數與觸媒最佳化 60 4.2.1 循環伏安掃描法 (Cyclic voltammetry, CV) 60 4.2.2 電鍍程序的探討 62 4.2.3 場效發射式掃描電子顯微鏡(Field emission scanning electron microscopy, FE-SEM) 64 4.2.4 線性伏安掃描法 (Linear sweep voltammetry, LSV) 66 4.2.5 穩定性分析 (Stability) 67 4.3 材料特性分析 68 4.3.1 應耦合電漿原子發射光譜儀 (Inductively coupled plasma optical emission spectroscopy, ICP) 68 4.3.2 X光繞射圖譜 (X-ray Diffraction, XRD) 69 4.3.3 場效發射式掃描電子顯微鏡與元素分布圖譜( Field emission scanning electron microscopy, FE-SEM / mapping) 71 4.3.4 掃描穿透式電子顯微鏡與元素分布圖譜 (Scanning transmission electron microscopy, STEM / mapping) 73 4.3.5 高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy, HRTEM) 74 4.3.6 拉曼光譜 (Raman spectra) 75 4.3.7 X光電子能譜分析(X-ray photoelectron spectroscopy, XPS) 78 4.4 電化學分析 84 4.4.1 線性伏安與循環伏安掃描法 (Linear sweep voltammetry and Cyclic voltammetry, LSV/ CV) 84 4.4.2 電化學交流阻抗 (Electrochemical impedance spectra, EIS) 86 4.4.3 Specific current density 87 4.4.4 穩定性量測 (Stability) 90 4.5 反應機制探討 92 4.5.1 不同電壓下原位拉曼光譜 (Operando Raman spectra depend on potential) 92 4.5.2 不同時間下原位拉曼光譜(Operando Raman spectra depend on time) 98 4.5.3 穩定性後觸媒表面的分析(Surface analysis after stability) 99 4.5.4 反應機制的討論 (Discussion of mechanism) 101 第五章 結論 102 參考文獻 103 附錄 112

    [1] P.F.Liu, S.Yang, L.R.Zheng, B.Zhang, H.G.Yang, Mo6+ activated multimetal oxygen-evolving catalysts, Chem. Sci. 8 (2017) 3484–3488.
    [2] T.Rising, H.Progression, W.Electrolysis, 氫能發展的明日之星—水電解產氫, (2018) 85–95.
    [3] S.Anantharaj, S.R.Ede, K.Karthick, S.Sam Sankar, K.Sangeetha, P.E.Karthik, S.Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment, Energy Environ. Sci. 11 (2018) 744–771.
    [4] S.Anantharaj, S.R.Ede, K.Sakthikumar, K.Karthick, S.Mishra, S.Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review, ACS Catal. 6 (2016) 8069–8097.
    [5] I.Roger, M.A.Shipman, M.D.Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nat. Rev. Chem. 1 (2017) 0003–0016.
    [6] M.Tahir, L.Pan, F.Idrees, X.Zhang, L.Wang, J.J.Zou, Z.L.Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review, Nano Energy. 37 (2017) 136–157.
    [7] F.Song, L.Bai, A.Moysiadou, S.Lee, C.Hu, L.Liardet, X.Hu, Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance, J. Am. Chem. Soc. 140 (2018) 7748–7759.
    [8] L.J.Enman, M.S.Burke, A.S.Batchellor, S.W.Boettcher, Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline Media, ACS Catal. 6 (2016) 2416–2423.
    [9] Y.Zhu, J.Wang, H.Chu, Y.Chu, H.M.Chen, In Situ/Operando Studies for Designing Next-generation Electrocatalysts In Situ/Operando Studies for Designing Next-generation Electrocatalysts, ACS Energy Lett. 5 (2020) 1281–1291.
    [10] J.M.P.M. and E.A.Carter, Unraveling Oxygen Evolution on Iron-Doped β‑Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites.pdf, J. Am. Chem. Soc. 141 (2019) 693–705.
    [11] C.Xie, Y. Wang, K.Hu, L.Tao, X.Huang, J.Huo, S.Wang, In situ confined synthesis of molybdenum oxide decorated nickel-iron alloy nanosheets from MoO42- intercalated layered double hydroxides for the oxygen evolution reaction, J. Mater. Chem. A. 5 (2017) 87–91.
    [12] C.Hsieh, C.Huang, Y.Chen, S.Lu, Applied Catalysis B : Environmental NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities, Appl. Catal. B Environ. 267 (2019) 118376–118385.
    [13] Y.Jin, S.Huang, X.Yue, H.Du, P.K.Shen, Letter Mo- and Fe-modified Ni(OH)2 / NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction, ACS Catal. 8 (2018) 2359–2363.
    [14] F.Qin, Z.Zhao, M.K.Alam, Y.Ni, F.Robles-Hernandez, L.Yu, S.Chen, Z.Ren, Z.Wang, J.Bao, Trimetallic NiFeMo for Overall Electrochemical Water Splitting with a Low Cell Voltage, ACS Energy Lett. 3 (2018) 546–554.
    [15] R.Kothari, D.Buddhi, R.L.Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods, Renew. Sustain. Energy Rev. 12 (2008) 553–563.
    [16] N.T.Suen, S.F.Hung, Q.Quan, N.Zhang, Y.J.Xu, H.M.Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337–365.
    [17] C.G.Morales-Guio, L.Liardet, X.Hu, Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts, J. Am. Chem. Soc. 138 (2016) 8946–8957.
    [18] I.C.Man, H.Y.Su, F.Calle-Vallejo, H.A.Hansen, J.I.Martínez, N.G.Inoglu, J.Kitchin, T.F.Jaramillo, J.K.Nørskov, J.Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem. 3 (2011) 1159–1165.
    [19] M.T.M.Koper, Analysis of electrocatalytic reaction schemes: Distinction between rate-determining and potential-determining steps, J. Solid State Electrochem. 17 (2013) 339–344.
    [20] C.Wei, S.Sun, D.Mandler, X.Wang, S.Z.Qiao, Z.J.Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev. 48 (2019) 2518–2534.
    [21] S.Anantharaj, S.Kundu, Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?, ACS Energy Lett. 4 (2019) 1260–1264.
    [22] C.C.L.McCrory, S.Jung, J.C.Peters, T.F.Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977–16987.
    [23] G.Li, L.Anderson, Y. Chen, M.Pan, P.-Y.A.Chuanga, New insights into evaluating catalyst activity and stability of oxygen evolution reactions in alkaline media†, Sustain. Energy Fuels. 2 (2017) 237–251.
    [24] M.B.Stevens, L.J.Enman, A.S.Batchellor, M.R.Cosby, A.E.Vise, C.D.M.Trang, S.W.Boettcher, Measurement techniques for the study of thin-film heterogeneous water oxidation electrocatalysts, Chem. Mater. 29 (2017) 120–140.
    [25] J.Landon, E.Demeter, N.Inoǧlu, C.Keturakis, I.E.Wachs, R.Vasić, A.I.Frenkel, J.R.Kitchin, Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes, ACS Catal. 2 (2012) 1793–1801.
    [26] M.W.Louie, A.T.Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen, J. Am. Chem. Soc. 135 (2013) 12329–12337.
    [27] Y.F.Li, A.Selloni, Mechanism, and activity of water oxidation on selected surfaces of pure and Fe-Doped NiOx, ACS Catal. 4 (2014) 1148–1153.
    [28] L.Trotochaud, S.L.Young, J.K.Ranney, S.W.Boettcher, Nickel−Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation, J. Am. Chem. Soc. 136 (2014) 6744–6753.
    [29] D.Friebel, M.W.Louie, M.Bajdich, K.E.Sanwald, Y.Cai, A.M.Wise, M.J.Cheng, D.Sokaras, T.C.Weng, R.Alonso-Mori, R.C.Davis, J.R.Bargar, J.K.Nørskov, A.Nilsson, A.T.Bell, Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc. 137 (2015) 1305–1313.
    [30] S.Klaus, Y.Cai, M.W.Louie, L.Trotochaud, A.T.Bell, Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity, J. Phys. Chem. C. 119 (2015) 7243–7254.
    [31] J.Y.C.Chen, L.Dang, H.Liang, W.Bi, J.B.Gerken, S.Jin, E.E.Alp, S.S.Stahl, Operando Analysis of NiFe, and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy, J. Am. Chem. Soc. 137 (2015) 15090–15093.
    [32] E.Article, O.Diaz-morales, D.Ferrus-suspedra, M.T.M.Koper, Chemical Science The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation †, Chem. Sci. 7 (2016) 2639–2645.
    [33] B.J.Trzes̈niewski, O.Diaz-Morales, D.A.Vermaas, A.Longo, W.Bras, M.T.M.Koper, W.A.Smith, In Situ Observation of Active Oxygen Species in Fe-containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc. 137 (2015) 15112–15121.
    [34] M.K.Bates, Q.Jia, H.Doan, W.Liang, S.Mukerjee, Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction, ACS Catal. 6 (2016) 155–161.
    [35] M.Görlin, P.Chernev, J.F.DeAraújo, T.Reier, S.Dresp, B.Paul, R.Krähnert, H.Dau, P.Strasser, Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts, J. Am. Chem. Soc. 138 (2016) 5603–5614.
    [36] M.B.Stevens, C.D.M.Trang, L.J.Enman, J.Deng, S.W.Boettcher, Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity, J. Am. Chem. Soc. 139 (2017) 11361–11364.
    [37] B.M.Hunter, Iron Is the Active Site in Nickel / Iron Water Oxidation Electrocatalysts, Molecules. 23 (2018) 903–910.
    [38] C.W.Chen, C.Y.Chiang, Molybdenum-containing amorphous metal oxide catalysts for oxygen evolution reaction, Int. J. Hydrogen Energy. 42 (2017) 29773–29780.
    [39] N.Han, F.Zhao, Y.Li, Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation, J. Mater. Chem. A. 3 (2015) 16348–16353.
    [40] B.Zhang, X.Zheng, O.Voznyy, R.Comin, M.Bajdich, F.P.G.DeArquer, C.T.Dinh, F.Fan, M.Yuan, A.Janmohamed, H.L.Xin, H.Yang, Homogeneously dispersed multimetal oxygen-evolving catalysts, 352 (2016) 333–338.
    [41] B.C.Moon, W.H.Choi, K.H.Kim, D.G.Park, J.W.Choi, J.K.Kang, Ultrafine Metallic Nickel Domains and Reduced Molybdenum States Improve Oxygen Evolution Reaction of NiFeMo Electrocatalysts, Small. 15 (2019) 1–8.
    [42] X.Yan, L.Tian, S.Atkins, Y.Liu, J.Murowchick, X.Chen, Converting CoMoO4 into CoO/MoOx for overall water splitting by hydrogenation, ACS Sustain. Chem. Eng. 4 (2016) 3743–3749.
    [43] J.Zhang, T.Wang, P.Liu, Z.Liao, S.Liu, X.Zhuang, M.Chen, E.Zschech, X.Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics, Nat. Commun. 8 (2017) 1–8.
    [44] Y.Y.Chen, Y.Zhang, X.Zhang, T.Tang, H.Luo, S.Niu, Z.H.Dai, L.J.Wan, J.S.Hu, Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution, Adv. Mater. 29 (2017) 1–7.
    [45] Z.N. Zech,* E. J. Podlaha,**, a and D. Landolt**, Laboratoire, Anomalous Codeposition of Iron Group Metals II. Mathematical Model, J. Electrochem. Soc. 146 (1999) 2892–2900.
    [46] N.Zech, E.J.Podlaha, D.Landolt, Anomalous codeposition of iron group metals I. Experimental results, J. Electrochem. Soc. 146 (1999) 2886–2891.
    [47] E.J.P. and D.Lando, Codeposition, Induced Ill. Molybdenum Alloys with Nickel, Cobalt, and Iron E., J. Electrochem. Soc. 144 (1997) 1672–1680.
    [48] V.C.Kieling, Parameters influencing the electrodeposition of Ni-Fe alloys, Surf. Coatings Technol. 96 (1997) 135–139.
    [49] L.S.Sanches, S.H.Domingues, A.Carubelli, L.H.Mascaro, Electrodeposition of Ni-Mo and Fe-Mo alloys from sulfate-citrate acid solutions, J. Braz. Chem. Soc. 14 (2003) 556–563.
    [50] M.Donten, H.Cesiulis, Z.Stojek, Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni-Mo alloys from pyrophosphate baths, Electrochim. Acta. 50 (2005) 1405–1412.
    [51] M.P.Pavlov, N.V.Morozova, V.N.Kudryavtsev, Electrodeposition of nickel-molybdenum alloys from ammonium citrate baths containing intermediate valence molybdenum compounds, Prot. Met. 43 (2007) 459–464.
    [52] K.Murase, H.Ando, E.Matsubara, T.Hirato, Y.Awakura, Determination of Mo(VI) species and composition in Ni-Mo alloy plating baths by Raman spectra factor analysis, J. Electrochem. Soc. 147 (2000) 2210–2217.
    [53] E. J. Podlaha* and D. Landolt*, Induced Codeposition I. An Experimental Investigation of Ni-Mo Alloys, J. Electrochem. Soc. 144 (1997) 885–892.
    [54] E.J.Podlaha, D.Landolt, Induced Cocleposition II. A Mathematical Model Describing the Electrodeposition of Ni-Mo Alloys, J. Electrochem. 143 (1996) 893–899.
    [55] E.Gómez, E.Pellicer, E.Vallés, Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition, J. Electroanal. Chem. 556 (2003) 137–145.
    [56] E.L.Smith, A.P.Abbott, K.S.Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114 (2014) 11060–11082.
    [57] A.P.Abbott, G.Capper, D.L.Davies, H.L.Munro, R.K.Rasheed, V.Tambyrajah, Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains, Chem. Commun. 1 (2001) 2010–2011.
    [58] A.I.Alhaji, Electrodeposition of Alloys from Deep Eutectic Solvents, University of Leicester, 2012.
    [59] C.Ma, A.Laaksonen, C.Liu, X.Lu, X.Ji, The peculiar effect of water on ionic liquids and deep eutectic solvents, Chem. Soc. Rev. 47 (2018) 8685–8720.
    [60] L.I.N.Tomé, V.Baião, W.daSilva, C.M.A.Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today. 10 (2018) 30–50.
    [61] A.A.C.Alcanfor, L.P.M.dosSantos, D.F.Dias, A.N.Correia, P.deLima-Neto, Electrodeposition of indium on copper from deep eutectic solvents based on choline chloride and ethylene glycol, Electrochim. Acta. 235 (2017) 553–560.
    [62] A.P.Abbott, K.ElTtaib, K.S.Ryder, E.L.Smith, Electrodeposition of nickel using eutectic based ionic liquids, Trans. Inst. Met. Finish. 86 (2008) 234–240.
    [63] A.P.Abbott, J.C.Barron, G.Frisch, K.S.Ryder, A.F.Silva, The effect of additives on zinc electrodeposition from deep eutectic solvents, Electrochim. Acta. 56 (2011) 5272–5279.
    [64] A.P.Abbott, J.C.Barron, G.Frisch, S.Gurman, K.S.Ryder, A.Fernando Silva, Double layer effects on metal nucleation in deep eutectic solvents, Phys. Chem. Chem. Phys. 13 (2011) 10224–10231.
    [65] A.W.Taylor, P.Licence, A.P.Abbott, Non-classical diffusion in ionic liquids, Phys. Chem. Chem. Phys. 13 (2011) 10147–10154.
    [66] C.D’Agostino, R.C.Harris, A.P.Abbott, L.F.Gladden, M.D.Mantle, Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy, Phys. Chem. Chem. Phys. 13 (2011) 21383–21391.
    [67] C.Gu, J.Tu, One-step fabrication of nanostructured ni film with lotus effect from deep eutectic solvent, Langmuir. 27 (2011) 10132–10140.
    [68] A.Florea, L.Anicai, S.Costovici, F.Golgovici, T.Visan, Ni and Ni alloy coatings electrodeposited from choline chloride-based ionic liquids - Electrochemical synthesis and characterization, Surf. Interface Anal. 42 (2010) 1271–1275.
    [69] A.P.Abbott, A.Ballantyne, R.C.Harris, J.A.Juma, K.S.Ryder, Electrochimica Acta A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions, Electrochim. Acta. 176 (2015) 718–726.
    [70] A.P.Abbott, K.J.McKenzie, Application of ionic liquids to the electrodeposition of metals, Phys. Chem. Chem. Phys. 8 (2006) 4265–4279.
    [71] Y.H.You, C.D.Gu, X.L.Wang, J.P.Tu, Electrodeposition of Ni-Co alloys from a deep eutectic solvent, Surf. Coatings Technol. 206 (2012) 3632–3638.
    [72] S.Fashu, C.D.Gu, X.L.Wang, J.P.Tu, Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn-Ni alloy coatings from a deep eutectic solvent, Surf. Coatings Technol. 242 (2014) 34–41.
    [73] T.G.Vo, S.D.S.Hidalgo, C.Y.Chiang, Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction, Dalt. Trans. 48 (2019) 14748–14757.
    [74] M.Y.Gao, C.Yang, Q.B.Zhang, J.R.Zeng, X.T.Li, Y.X.Hua, C.Y.Xu, P.Dong, Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting, J. Mater. Chem. A. 5 (2017) 5797–5805.
    [75] S.Costovici, A.C.Manea, T.Visan, L.Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochim. Acta. 207 (2016) 97–111.
    [76] E.A.M.Cherigui, K.Sentosun, M.H.Mamme, M.Lukaczynska, H.Terryn, S.Bals, J.Ustarroz, On the Control and Effect of Water Content during the Electrodeposition of Ni Nanostructures from Deep Eutectic Solvents, J. Phys. Chem. C. 122 (2018) 23129–23142.
    [77] C.Du, B.Zhao, X.B.Chen, N.Birbilis, H.Yang, Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid, Sci. Rep. 6 (2016) 1–14.
    [78] E.A.Mernissi Cherigui, K.Sentosun, P.Bouckenooge, H.Vanrompay, S.Bals, H.Terryn, J.Ustarroz, Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water, J. Phys. Chem. C. 121 (2017) 9337–9347.
    [79] O.S.Hammond, D.T.Bowron, K.J.Edler, The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution, Angew. Chemie - Int. Ed. 56 (2017) 9782–9785.
    [80] V.S.Protsenko, A.A.Kityk, D.A.Shaiderov, F.I.Danilov, Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride, J. Mol. Liq. 212 (2015) 716–722.
    [81] R.Li, Q.Dong, J.Xia, C.Luo, L.Sheng, F.Cheng, J.Liang, Electrodeposition of composition controllable Zn–Ni coating from water modified deep eutectic solvent, Surf. Coatings Technol. 366 (2019) 138–145.
    [82] K.Zeng, D.Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36 (2010) 307–326.
    [83] N.Frenzel, J.Hartley, G.Frisch, Voltammetric and spectroscopic study of ferrocene and hexacyanoferrate and the suitability of their redox couples as internal standards in ionic liquids, Phys. Chem. Chem. Phys. 19 (2017) 28841–28852.
    [84] G.Li, L.Anderson, Y.Chen, M.Pan, P.-Y.A.Chuanga, New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media, Sustain. Energy Fuels. 2 (2018) 237–251.
    [85] C.D.Gu, J.P.Tu, Thermochromic behavior of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic composite films, RSC Adv. 1 (2011) 1220–1227.
    [86] E.A.R. and G.F.S.W.J. J. Cruywagen, Molybdenum(VI) complex formation--8. equilibria and thermodynamic quantities for the reactions with citrate, Polyhedron. 14 (1995) 3481–3493.
    [87] J.M.Hartley, C.M.Ip, G.C.H.Forrest, K.Singh, S.J.Gurman, K.S.Ryder, A.P.Abbott, G.Frisch, EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents, Inorg. Chem. 53 (2014) 6280–6288.
    [88] F.Zhang, Y.Shi, T.Xue, J.Zhang, Y.Liang, B.Zhang, In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation, Sci. China Mater. 60 (2017) 324–334.
    [89] Z.Qiu, Y.Ma, T.Edvinsson, In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting, Nano Energy. 66 (2019) 104–118.
    [90] Q.Xu, G.Jia, J.Zhang, Z.Feng, C.Li, Surface phase composition of iron molybdate catalysts studied by UV Raman spectroscopy, J. Phys. Chem. C. 112 (2008) 9387–9393.
    [91] M.S.Mihalev, C.M.Hardalov, C.G.Christov, M.Rinke, H.Leiste, Transition metal oxides as materials for additive laser marking on stainless steel, Acta Polytech. 57 (2017) 252–262.
    [92] M.Dieterle, G.Weinberg, G.Mestl, Raman spectroscopy of molybdenum oxides - Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS, Raman spectroscopy and X-ray diffraction, Phys. Chem. Chem. Phys. 4 (2002) 812–821.
    [93] D.A.Kuznetsov, B.Han, Y.Yu, R.R.Rao, J.Hwang, Y.Román-Leshkov, Y.Shao-Horn, Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis, Joule. 2 (2018) 225–244.
    [94] K.Hedenstedt, J.Bäckström, E.Ahlberg, In-Situ Raman Spectroscopy of α- and γ-FeOOH during Cathodic Load, J. Electrochem. Soc. 164 (2017) 621–627.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 2025/08/17 (校外網路)
    全文公開日期 2025/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE