簡易檢索 / 詳目顯示

研究生: Yohannes Ayele Awoke
Yohannes Ayele Awoke
論文名稱: 設計高選擇性、活性和穩定的電化學觸媒用於甲醇氧化和氧還原反應
Designing highly Selective, Active, and Stable Electrochemical Catalysts for Methanol Oxidation and Oxygen Reduction Reactions
指導教授: 黃炳照
Bing-Joe Hwang
牟中原
Chung-Yuan Mou
口試委員: 黃炳照
Bing-Joe Hwang
牟中原
Chung-Yuan Mou
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
王迪彥
Di-yan Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 152
中文關鍵詞: 單原子催化劑甲醇氧化反應雙活性位點選擇性H2O2 生產雙核催化劑2e-途徑ORR異功能碳基無金屬
外文關鍵詞: Single-atom catalyst, methanol oxidation reaction, dual active sites, selectivity, H2O2 production, binuclear catalyst, 2e- pathway ORR, heterofunction, carbon-based, metal-free
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    具備高活性、選擇性、穩定性和低成本的電催化劑在能源和化學合成工業中具有很大的需求。這些電催化劑中,單原子催化劑因其特殊性質可以在不同的電化學應用中滿足上述標準,例如氧氣還原反應(ORR)、二氧化碳還原反應(CO2RR)、氫氣析出反應(HER)、氧氣析出反應(OER)、氮還原反應(NRR) 和有機小分子氧化反應(如甲醇氧化(MOR)、甲酸氧化(FAOR))。本論文展示了三種用於MOR和2電子途徑ORR(2eORR)用於生產H2O2之電催化劑的方法。
    在第一種方法中,鉑基催化劑和與其他元素合金化的奈米粒子被認為對MOR有效。然而,單原子態的Pt若負載在碳基載體上,則需要 Pt原子結合其他物種來完成甲醇氧化。因此,我們合成一個分散在雙摻雜TiO2上的Pt 單原子(Pt1/Ti0.8W0.2NxOy)作為有效且持久的MOR 催化劑。從量測的結果得知Pt1與載體表面WO3-x的雙活性位點之間的協同作用可允許甲醇吸附和脫氫。DFT研究證實,Pt1/Ti0.8W0.2NxOy中Pt1-WO3-x雙位點間的協同作用有助於提高催化活性、穩定性和選擇性。Pt1/Ti0.8W0.2NxOy催化劑展示了高 MOR效能,在鹼性介質中於0.82 V(vs. RHE)下具有 560 mA mg-1Pt的質量活性。該活性分別比20%Pt/C和同載體上的Pt奈米顆粒(2wt% Pt/Ti0.8W0.2NxOy)高9.3和1.3倍。從動力學上來講,在Pt1/Ti0.8W0.2NxOy上催化MOR更快,這由高的擴散係數1.5×10-12 cm2/s和低Tafel斜率(93 mV dec-1)所證實。此外,Pt1/Ti0.8W0.2NxOy以90%的法拉第效率選擇性地將甲醇氧化為甲酸鹽,而2wt% Pt1/Ti0.8W0.2NxOy以69%的選擇性將甲醇氧化為甲醛。此外,Pt1/Ti0.8W0.2NxOy的質量活性在穩定性測試10小時後僅下降了7.2%;而2wt% Pt/Ti0.8W0.2NxOy和20%Pt/C 的活性損失分別為 23% 和43%。
    在第二種方法中,單原子催化劑在2eORR中比奈米粒子催化劑更有效,這是由於單原子催化劑的活性位點可使OOH反應中間體更合適地吸附在催化劑表面上,這阻礙了O-O鍵斷裂,提高了H2O2選擇性。非貴金屬單原子催化劑可成為2eORR的最佳選擇。然而,活性和選擇性仍然無法令人滿意。因此,設計高活性和選擇性的原子分散催化劑,用於通過 2eORR綠色合成全球需求最高的化學物質H2O2是一種很有前途的方法。在此研究中,我們通過配體介導的裂解過程開發了雙(N, O)配位的雙核鈷單原子催化劑作為高選擇性和高效的2eORR 催化劑(Co2N2O4/C)。結果發現,Co2N2O4/C催化劑在η ~ 0的寬電位範圍(0.1 V至0.7 V vs. RHE)下,對 2eORR具有近100%的優異H2O2選擇性。比較使用M-N4型催化劑Co Pc,Co2N2O4/C表現出高活性和高選擇性,且在12小時穩定性測試中活性損失可忽略不計。Co2N2O4/C催化劑還提供了高 H2O2生產率---在 H 型電池/流動電池中。在DFT計算研究中,雙核原子鈷催化劑,通過 N 和O配位進行電子結構修飾,在ORR物種吸附自由能與電位的火山型關係(Volcano plot)中,Co2N2O4具有最佳的 OOH*吸附能(4.21 eV)。 這為通過 2電子途徑氧還原反應來高效生產過氧化物的電活性材料設計提供了見解。
    在第三種方法中,雖然在第一和第二配位層中具有雜原子元素配位的非貴金屬單原子催化劑提供了高選擇性和H2O2的生產率,然而,非金屬催化劑(Metal-free catalyst)可以是一種成本低、資源豐富、且對2eORR具有高活性的潛力電催化劑。這項研究工作使用了精氨酸-水楊醛作為雜原子摻雜劑,並通過低溫熱裂解製備催化劑(Sal-Arg/C-300)。所製備的 Sal-Arg/C-300是一種雙雜原子(N, O)功能化碳材料,富含醚(環氧)和吡咯-N官能基團。與單氧或氮功能化的碳材料相比,Sal-Arg/C-300 在鹼性介質中的各種電位(0.1 - 0.7 V vs. RHE)中表現出顯著的ORR活性和近100% H2O2的選擇性。雜原子催化劑可以在 H型電解槽中以378 mmol h-1gcat-1 的優異速率生成H2O2,超過其他報導的碳基ORR催化劑。Sal-Arg/C-300 中的吡咯-N 和醚基 (C-O-C) 之間的協同作用與 2eORR活性和選擇性密切相關。 這一發現為H2O2的電化學合成提供了巨大的潛力,為提供了一種低成本、豐富且高效的催化劑。


    Abstract
    Electrochemical catalysts with high activity, selectivity, stability, and low cost are highly demanding in the energy sector as well as in chemical synthesis industries. Among the catalyst groups, single-atom catalysts can fulfill the mentioned criteria in different electrochemical applications such as ORR, CO2RR, HER, OER, NRR, and small alcohol oxidations (MOR) formic acid oxidation if their coordination is well managed. This thesis has demonstrated three approaches for designing highly active, selective, and stable catalysts for MOR and two electron pathway ORR for H2O2 Production.
    In the first approach, for MOR, platinum-based catalyst nanoparticles, nanocluster, alloyed with other elements are considered effective. However, Pt in a single atom state is effective for methanol oxidation since Pt ensembles are needed to complete methanol oxidation if supported on carbon-based support. So, we synthesize the first Pt single atom dispersed over dual-doped TiO2 (Pt1/Ti0.8W0.2NxOy) as an effective and long-lasting MOR catalyst. It has been discovered that synergy between Pt1-WO3-x dual-active sites allows for methanol adsorption and dehydrogenation. DFT studies confirmed the synergistic interactions between the Pt1-WO3-x dual active sites in Pt1/Ti0.8W0.2NxOy contribute to the high catalytic activity, stability, and selectivity. High MOR performance is demonstrated by the Pt1/Ti0.8W0.2NxOy catalyst, which has a mass activity of 560 mA mg-1Pt at 0.82 V vs. RHE in an alkaline medium. This activity is 9.3 and 1.3 times higher than the equivalent samples of 20% Pt/C and Pt nanoparticles (2wt% Pt/Ti0.8W0.2NxOy), respectively. Kinetically, MOR is faster on Pt1/Ti0.8W0.2NxOy than reference nanoparticle samples 20% Pt/C and 2wt% Pt/Ti0.8W0.2NxOy as confirmed by the higher diffusion coefficient of 1.5 x 10-12 cm2/s and lower Tafel slope 93 mV dec-1. Furthermore, Pt1/Ti0.8W0.2NxOy selectively oxidizes methanol to formate with 90% faradaic efficiency whereas, 2wt% Pt/Ti0.8W0.2NxOy oxidizes methanol to formaldehyde with 69% selectivity. Additionally, the mass activity of Pt1/Ti0.8W0.2NxOy only decreased by 7.2% after 10 hours of the stability test. However, activity loss in 2wt% Pt/Ti0.8W0.2NxOy and 20% Pt/C getting worsen with activity losses of 23% and 43 respectively.
    In the second approach, Single-atom catalysts are more efficient than nanoparticle samples in a 2e- route ORR, since single-atom catalysts prefer ende on OOH- intermediate adsorption on the catalyst surface, which hinders O-O bond breaking, improve H2O2 selectivity. Non-precious transition metal single-atom catalysts become the best choice for 2e-route ORR. However, the activity and selectivity are still not satisfactory. So, designing highly active and selective atomically dispersed catalysts for green synthesis of the most globally demanding chemical H2O2 through ORR in a 2e- the pathway is a promising approach. Herein, we develop a dual (N, O) coordinated binuclear cobalt single-atom catalyst through a ligand-mediated pyrolysis process as highly selective and efficient ORR catalysts. It was found that the Co2N2O4/C catalyst has an outstanding selectivity of ~100% to a 2e- route ORR for the production of H2O2 in a wide range of Potentials (0.1v to 0.7 V vs.RHE) at η ~ 0. Compared with the M-N4 Type catalyst CoPC/C, Co2N2O4/C displays high activity, and selectivity, with negligible activity loss over 12 hours. The intended binuclear atom cobalt catalyst, electronically modified with N, and O coordination (Co2N2O4/C) possess an optimal OOH* intermediate adsorption energy at the volcano Peak (4.21 eV). This provided insights into the design of electroactive materials for efficient peroxide production through a 2e-path oxygen reduction
    In the third approach, although non-precious single-atom catalysts with heteroatomic elemental coordination in the first and second coordination sphere provide high selectivity and production rate of H2O2, an electrocatalyst with low cost, abundant resources with high activity towards two-electron 2e- ORR still highly demanding. Metal-free carbon-based catalysts are the best alternative in this regard. This work reports a heteroatomic doped ordinary carbon as a metal-free catalyst (Sal-Arg/C-300) using arginine-salicylaldehyde as a heteroatomic dopant through in-situ doping at low-temperature pyrolysis. The as-prepared Sal-Arg/C-300 is a dual heteroatomic (N, O) functionalized carbon material rich in ether (epoxy) and pyrrolic-N functional groups. Sal-Arg/C-300 exhibits remarkable ORR activity and 100% H2O2 record selectivity in a wide range of potentials (0.1 - 0.7 V vs. RHE) in alkaline media compared to singly oxygen or nitrogen-functionalized carbon materials. The heteroatomic catalyst can produce H2O2 at a superior rate of 378 mmol h-1gcat-1 in an H-cell, surpassing other reported carbon-based ORR catalysts. Optimal *OOH adsorption energy achieved with the combination of Py-N and C-O-C functional groups on the carbon material through DFT calculation. The synergy between the pyrrolic-N and ether groups (C-O-C) in Sal-Arg/C-300 strongly correlates with its high ORR activity and selectivity in the 2e- ORR performance. This discovery offers significant potential for the electrochemical synthesis of H2O2, providing a low-cost, abundant, and highly efficient catalyst.

    Table of Contents 中文摘要 i Abstract iii Acknowledgment vi Index of figures xi Index of Tables xviii Index of Units and Abbreviations xix Chapter 1: General Background 1 1.1 Background of the Study 1 1.2. Electrochemical Oxidation of Small Molecular Weight Alcohols 2 1.2.1 Methanol Electrochemical Oxidation Reactions (MOR) for Energy Conversion 3 1.2.2. Methanol Electrochemical Oxidation Reactions (MOR) for Value-added Product Synthesis 4 1.3. Electrochemical Oxygen Reduction Reaction (ORR) 7 1.3.1. H2O2 as a Valuable Product 8 Chapter 2. Development of Selective Electrocatalyst for MOR and H2O2 Production 11 2.1. Precious Metal-Based Catalyst for MOR 11 2.1.1. Carbon-Supported Pt-Based Catalyst for MOR 12 2.1.2. Metal Oxide Supported Pt-Based Electrocatalyst for MOR 13 2.1.2.1 Pt Nanoparticle on the metal oxide support 13 2.1.2.2. Metal Oxide Supported Platinum Single-Atom Catalyst for MOR 16 2.2. Electrocatalyst for Selective ORR 18 2.2.1. Precious Metal Alloy and Single-Atom Catalysts for ORR 19 2.2.2. Non-Precious Metal Single-atom Catalysts for ORR 21 2.3. Metal-Free Catalysts for ORR 26 2.3.1. Oxygen doping 27 2.3.2. N doping 29 2.3.3. Multi-heteroatom codoping 32 2.4. Motivation and Objectives of the Study 35 2.4.1. Motivations 35 2.4.2 Objectives of the study 36 Chapter 3: Experimental Section and Characterization 39 3.1. Chemicals and Reagents 39 3.2. Synthesis of Dual Doped TiO2 (Ti0.8 W0.2NxOy) and Pt1/ Ti0.8 W0.2NxOy 40 3.3. Synthesis of Salicylidene-l-Alanine and bi-Atomic Cobalt Single Atom 40 3.4. Synthesis of Salicylidene-l-Arginine and Dual Functionalized (N, O) Metal-Free Carbon Catalyst (Sal-Agr/C-300) 41 3.5. Material Characterization Techniques 42 3.6. Electrochemical Measurements 44 3.6.1. Electrochemical (MOR) Performance of Pt1/Ti0.8W0.2NxOy 44 3.6.2. Electrochemical Performance of Co2N2O4/C 45 3.6.3. Electrochemical Performance of Sal-Agr/C-300 47 Chapter 4. The synergistic effect of Pt1-W dual sites as a highly active and durable catalyst for electrochemical methanol oxidation 49 4.1. Introduction 49 4.2. Result and Discussion 51 4.2.1 Synthesis and Morphology Characterization 51 4.2.2. Structural Composition and local structure Characterizations 56 4.2.3. Electrochemical Performance and Stability Test 63 4.2.4. MOR Mechanism 70 4.3. Summary 74 Chapter 5. Boosting Catalytic Activity and Selectivity of 2e- ORR by Controlling The Local Coordination and the Atomic Nature of Cobalt Single Atom 77 5.1.Introduction 77 5.2. Result and Discussion 78 5.2.1. Synthesis and Characterization 78 5.2.2. Synthesis and Characterization of Co2N2O4/C 80 5.2.3 Structural and composition characterizations 82 5.2.4. Electrochemical Performance 88 5.2.5. Theoretical Prediction of Electrocatalytic Activity and Selectivity 90 5.3. Summary 92 Chapter 6: Tuning the synergy between the heteroatomic functionalities of carbon material as an efficient metal-free electrocatalyst for H2O2 production 93 6.1. Introduction 93 6.2. Result and Discussion 95 6.2.1. Material Synthesis and Characterization 95 6.2.1.1 Material physical characterizations 99 6.2.1.2 Structural and Surface composition analysis 101 6.2.2 Electrochemical performance 110 6. 2.3 Active Site Identification and Post-Electrochemical Surface Properties 115 6.2.4. Theoretical Calculations 117 6.3. Summary 118 Chapter 7. Conclusions and Perspectives 121 7.1 Conclusions 121 7.2 Perspective 122 References 125

    References

    (1) Megia, P. J.; Vizcaino, A. J.; Calles, J. A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy and Fuels 2021, 35 (20), 16403–16415. https://doi.org/10.1021/acs.energyfuels.1c02501.
    (2) Shan, S.; Luo, J.; Wu, J.; Kang, N.; Zhao, W.; Cronk, H.; Zhao, Y.; Joseph, P.; Petkov, V.; Zhong, C. J. Nanoalloy Catalysts for Electrochemical Energy Conversion and Storage Reactions. RSC Adv. 2014, 4 (80), 42654–42669. https://doi.org/10.1039/c4ra05943c.
    (3) Kim, J.; Choi, S.; Cho, J.; Kim, S. Y.; Jang, H. W. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS Mater. Au 2022, 2 (1), 1–20. https://doi.org/10.1021/acsmaterialsau.1c00041.
    (4) Gao, D.; Li, H.; Wei, P.; Wang, Y.; Wang, G.; Bao, X. Electrochemical Synthesis of Catalytic Materials for Energy Catalysis. Chinese J. Catal. 2022, 43 (4), 1001–1016. https://doi.org/10.1016/S1872-2067(21)63940-2.
    (5) Yazdani, A.; Botte, G. G. Perspectives of Electrocatalysis in the Chemical Industry: A Platform for Energy Storage. Curr. Opin. Chem. Eng. 2020, 29 (1), 89–95. https://doi.org/10.1016/j.coche.2020.07.003.
    (6) Mah, D. T. Electrochemical Manufacturing in the 21st Century. Electrochem. Soc. Interface 2014, 23 (3), 47. https://doi.org/10.1149/2.F03143if.
    (7) Si, F.; Liu, S.; Liang, Y.; Fu, X.-Z.; Zhang, J.; Luo, J.-L. Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals; Springer Nature Singapore, 2022; Vol. 5. https://doi.org/10.1007/s41918-022-00168-0.
    (8) Khan, K.; Tareen, A. K.; Aslam, M.; Zhang, Y.; Wang, R.; Ouyang, Z.; Gou, Z.; Zhang, H. Recent Advances in Two-Dimensional Materials and Their Nanocomposites in Sustainable Energy Conversion Applications; Royal Society of Chemistry, 2019; Vol. 11. https://doi.org/10.1039/c9nr05919a.
    (9) Arshad, F.; Haq, T. U.; Hussain, I.; Sher, F. Recent Advances in Electrocatalysts toward Alcohol-Assisted, Energy-Saving Hydrogen Production. ACS Appl. Energy Mater. 2021, 4 (9), 8685–8701. https://doi.org/10.1021/acsaem.1c01932.
    (10) Luo, H.; Barrio, J.; Sunny, N.; Li, A.; Steier, L.; Shah, N.; Stephens, I. E. L.; Titirici, M. M. Progress and Perspectives in Photo- and Electrochemical-Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Adv. Energy Mater. 2021, 11 (43). https://doi.org/10.1002/aenm.202101180.
    (11) Kumar, V.; Wen, P.; Lin, F.; Russell, A. E.; Brett, D. J. L.; Hardacre, C. Effect of Mass Transport on the Electrochemical Oxidation of Alcohols Over Electrodeposited Film and Carbon-Supported Pt Electrodes. Top. Catal. 2018, 61 (3), 240–253. https://doi.org/10.1007/s11244-018-0893-6.
    (12) Wang, D.; Wang, P.; Wang, S.; Chen, Y. H.; Zhang, H.; Lei, A. Direct Electrochemical Oxidation of Alcohols with Hydrogen Evolution in Continuous-Flow Reactor. Nat. Commun. 2019, 10 (1), 1–8. https://doi.org/10.1038/s41467-019-10928-0.
    (13) Landälv, I. Methanol As a Renewable Fuel – a Knowledge Synthesis; 2017; Vol. 6. https://doi.org/10.3390/pr6030020.
    (14) Zhu, J.; Xia, L.; Yu, R.; Lu, R.; Li, J.; He, R.; Wu, Y.; Zhang, W.; Hong, X.; Chen, W.; Zhao, Y.; Zhou, L.; Mai, L.; Wang, Z. Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces. J. Am. Chem. Soc. 2022, 144 (34), 15529–15538. https://doi.org/10.1021/jacs.2c03982.
    (15) Joghee, P.; Malik, J. N.; Pylypenko, S.; O’Hayre, R. A Review on Direct Methanol Fuel Cells–In the Perspective of Energy and Sustainability. MRS Energy Sustain. 2015, 2 (1), 1–31. https://doi.org/10.1557/mre.2015.4.
    (16) Ozoemena, K. I. Nanostructured Platinum-Free Electrocatalysts in Alkaline Direct Alcohol Fuel Cells: Catalyst Design, Principles and Applications. RSC Adv. 2016, 6 (92), 89523–89550. https://doi.org/10.1039/c6ra15057h.
    (17) Gopalakrishnan, A.; Durai, L.; Ma, J.; Kong, C. Y.; Badhulika, S. Vertically Aligned Few-Layer Crumpled MoS2Hybrid Nanostructure on Porous Ni Foam toward Promising Binder-Free Methanol Electro-Oxidation Application. Energy and Fuels 2021, 35 (12), 10169–10180. https://doi.org/10.1021/acs.energyfuels.1c00957.
    (18) Jamil, R.; Sohail, M.; Baig, N.; Ansari, M. S.; Ahmed, R. Synthesis of Hollow Pt-Ni Nanoboxes for Highly Efficient Methanol Oxidation. Sci. Rep. 2019, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-51780-y.
    (19) Gao, X.; Zhang, J.; Song, F.; Zhang, Q.; Han, Y.; Tan, Y. Selective Oxidation Conversion of Methanol/Dimethyl Ether. Chem. Commun. 2022, 58 (30), 4687–4699. https://doi.org/10.1039/d1cc07276e.
    (20) Desmons, S.; Fauré, R.; Bontemps, S. Formaldehyde as a Promising C1 Source: The Instrumental Role of Biocatalysis for Stereocontrolled Reactions. ACS Catal. 2019, 9 (10), 9575–9588. https://doi.org/10.1021/acscatal.9b03128.
    (21) Millar, G. J.; Collins, M. Industrial Production of Formaldehyde Using Polycrystalline Silver Catalyst. Ind. Eng. Chem. Res. 2017, 56 (33), 9247–9265. https://doi.org/10.1021/acs.iecr.7b02388.
    (22) Pilato, L. Introduction; 2010. https://doi.org/10.1007/978-3-642-04714-5_1.
    (23) Deitermann, M.; Huang, Z.; Lechler, S.; Merko, M.; Muhler, M. Non-Classical Conversion of Methanol to Formaldehyde. Chemie-Ingenieur-Technik 2022, 94 (11), 1573–1590. https://doi.org/10.1002/cite.202200083.
    (24) Shakeel, K.; Javaid, M.; Muazzam, Y.; Naqvi, S. R.; Taqvi, S. A. A.; Uddin, F.; Mehran, M. T.; Sikander, U.; Niazi, M. B. K. Performance Comparison of Industrially Produced. Perform. Comp. Ind. Prod. Formaldehyde Using Two Di erent Catal. 2020, 8 (571), 1–12.
    (25) Vieira Soares, A. P.; Farinha Portela, M.; Kiennemann, A. Methanol Selective Oxidation to Formaldehyde over Iron-Molybdate Catalysts. Catal. Rev. - Sci. Eng. 2005, 47 (1), 125–174. https://doi.org/10.1081/CR-200049088.
    (26) Mursics, J.; Urbancl, D.; Goricanec, D. Process of Formaldehyde and Volatile Organic Compounds’ Removal Fromwaste Gases. Appl. Sci. 2020, 10 (14). https://doi.org/10.3390/app10144702.
    (27) Khan, M.; Hameed, A.; Samad, A.; Mushiana, T.; Abdullah, M. I.; Akhtar, A.; Ashraf, R. S.; Zhang, N.; Pollet, B. G.; Schwingenschlögl, U.; Ma, M. In Situ Grown Oxygen-Vacancy-Rich Copper Oxide Nanosheets on a Copper Foam Electrode Afford the Selective Oxidation of Alcohols to Value-Added Chemicals. Commun. Chem. 2022, 5 (1). https://doi.org/10.1038/s42004-022-00708-1.
    (28) Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y.; Cabot, A.; Cui, C. Selective Methanol-to-Formate Electrocatalytic Conversion on Branched Nickel Carbide. Angew. Chemie - Int. Ed. 2020, 59 (47), 20826–20830. https://doi.org/10.1002/anie.202004301.
    (29) Meng, F.; Dai, C.; Liu, Z.; Luo, S.; Ge, J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J.; Mandler, D.; Xu, Z. J. Methanol Electro-Oxidation to Formate on Iron-Substituted Lanthanum Cobaltite Perovskite Oxides. eScience 2022, 2 (1), 87–94. https://doi.org/10.1016/j.esci.2022.02.001.
    (30) Kishi, R.; Ogihara, H.; Yoshida-Hirahara, M.; Shibanuma, K.; Yamanaka, I.; Kurokawa, H. Green Synthesis of Methyl Formate via Electrolysis of Pure Methanol. ACS Sustain. Chem. Eng. 2020, 8 (31), 11532–11540. https://doi.org/10.1021/acssuschemeng.0c02281.
    (31) Han, C.; Yang, X.; Gao, G.; Wang, J.; Lu, H.; Liu, J.; Tong, M.; Liang, X. Selective Oxidation of Methanol to Methyl Formate on Catalysts of Au-Ag Alloy Nanoparticles Supported on Titania under UV Irradiation. Green Chem. 2014, 16 (7), 3603–3615. https://doi.org/10.1039/c4gc00367e.
    (32) Lee, J. S.; Kim, J. C.; Kim, Y. G. Methyl Formate as a New Building Block in C1 Chemistry. Appl. Catal. 1990, 57 (1), 1–30. https://doi.org/10.1016/S0166-9834(00)80720-4.
    (33) Yuan, D. J.; Hengne, A. M.; Saih, Y.; Huang, K. W. Nonoxidative Dehydrogenation of Methanol to Methyl Formate through Highly Stable and Reusable CuMgO-Based Catalysts. ACS Omega 2019, 4 (1), 1854–1860. https://doi.org/10.1021/acsomega.8b03069.
    (34) Lu, Z.; Gao, D.; Yin, H.; Wang, A.; Liu, S. Methanol Dehydrogenation to Methyl Formate Catalyzed by SiO2-, Hydroxyapatite-, and MgO-Supported Copper Catalysts and Reaction Kinetics. J. Ind. Eng. Chem. 2015, 31, 301–308. https://doi.org/10.1016/j.jiec.2015.07.002.
    (35) Wang, R.; Wu, Z.; Wang, G.; Qin, Z.; Chen, C.; Dong, M.; Zhu, H.; Fan, W.; Wang, J. Highly Active Au-Pd Nanoparticles Supported on Three-Dimensional Graphene-Carbon Nanotube Hybrid for Selective Oxidation of Methanol to Methyl Formate. RSC Adv. 2015, 5 (56), 44835–44839. https://doi.org/10.1039/c5ra06025g.
    (36) Song, K. H.; Litzinger, T. A. Effects of Dimethyoxymethane Blending into Diesel Fuel on Soot in an Optically Accessible DI Diesel Engine. Combust. Sci. Technol. 2006, 178 (12), 2249–2280. https://doi.org/10.1080/00102200600637204.
    (37) Guo, H.; Li, D.; Xiao, H.; Zhang, J.; Li, W.; Sun, Y. Methanol Selective Oxidation to Dimethoxymethane on H3PMo 12O40/SBA-15 Supported Catalysts. Korean J. Chem. Eng. 2009, 26 (3), 902–906. https://doi.org/10.1007/s11814-009-0151-5.
    (38) Li, Y.; Wang, H.; Wang, H.; Lu, B.; Zhao, J.; Cai, Q. An Efficient Route for Electrooxidation of Methanol to Dimethoxymethane Using Ionic Liquid as Electrolyte. J. Electrochem. Soc. 2017, 164 (8), H5074–H5077. https://doi.org/10.1149/2.0111708jes.
    (39) Anthony, C. R.; McElwee-White, L. Selective Electrochemical Oxidation of Methanol to Dimethoxymethane Using Ru/Sn Catalysts. J. Mol. Catal. A Chem. 2005, 227 (1–2), 113–117. https://doi.org/10.1016/j.molcata.2004.10.016.
    (40) Liu, M.; Wang, L.; Zhao, K.; Shi, S.; Shao, Q.; Zhang, L.; Sun, X.; Zhao, Y.; Zhang, J. Atomically Dispersed Metal Catalysts for the Oxygen Reduction Reaction: Synthesis, Characterization, Reaction Mechanisms and Electrochemical Energy Applications. Energy Environ. Sci. 2019, 12 (10), 2890–2923. https://doi.org/10.1039/c9ee01722d.
    (41) Shimizu, K.; Sepunaru, L.; Compton, R. G. Innovative Catalyst Design for the Oxygen Reduction Reaction for Fuel Cells. Chem. Sci. 2016, 7 (5), 3364–3369. https://doi.org/10.1039/c6sc00139d.
    (42) Jung, E.; Shin, H.; Hooch Antink, W.; Sung, Y. E.; Hyeon, T. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design. ACS Energy Lett. 2020, 5 (6), 1881–1892. https://doi.org/10.1021/acsenergylett.0c00812.
    (43) Pędziwiatr, P.; Filip Mikołajczyk, Dawid Zawadzki, Kinga Mikołajczyk, A. B. Paulina Pędziwiatr, Filip Mikołajczyk, Dawid Zawadzki, Kinga Mikołajczyk, Agnieszka Bedka. Acta Innov. 2018, No. 26, 45–52.
    (44) Abdollahi, M.; Hosseini, A. Hydrogen Peroxide, Third Edit.; Elsevier, 2014; Vol. 2. https://doi.org/10.1016/B978-0-12-386454-3.00736-3.
    (45) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical Synthesis of Hydrogen Peroxide from Water and Oxygen. Nat. Rev. Chem. 2019, 3 (7), 442–458. https://doi.org/10.1038/s41570-019-0110-6.
    (46) Sheng, H.; Hermes, E. D.; Yang, X.; Ying, D.; Janes, A. N.; Li, W.; Schmidt, J. R.; Jin, S. Electrocatalytic Production of H2O2 by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS2). ACS Catal. 2019, 9 (9), 8433–8442. https://doi.org/10.1021/acscatal.9b02546.
    (47) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chemie - Int. Ed. 2006, 45 (42), 6962–6984. https://doi.org/10.1002/anie.200503779.
    (48) Chen, Y.; Wan, J.; Ma, Y.; Dong, X.; Wang, Y.; Huang, M. Fiber Properties of De-Inked Old Newspaper Pulp after Bleaching with Hydrogen Peroxide. BioResources 2015, 10 (1), 1857–1868. https://doi.org/10.15376/biores.10.1.1857-1868.
    (49) Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen Peroxide: A Key Chemical for Today’s Sustainable Development. ChemSusChem 2016, 9 (24), 3374–3381. https://doi.org/10.1002/cssc.201600895.
    (50) Hu, X.; Zeng, X.; Liu, Y.; Lu, J.; Zhang, X. Carbon-Based Materials for Photo- And Electrocatalytic Synthesis of Hydrogen Peroxide. Nanoscale 2020, 12 (30), 16008–16027. https://doi.org/10.1039/d0nr03178j.
    (51) Sun, Y.; Han, L.; Strasser, P. A Comparative Perspective of Electrochemical and Photochemical Approaches for Catalytic H2O2production. Chem. Soc. Rev. 2020, 49 (18), 6605–6631. https://doi.org/10.1039/d0cs00458h.
    (52) Crole, D. A.; Underhill, R.; Edwards, J. K.; Shaw, G.; Freakley, S. J.; Hutchings, G. J.; Lewis, R. J. The Direct Synthesis of Hydrogen Peroxide from H 2 and O 2 Using Pd-Ni/TiO 2 Catalysts: Pd-Ni Catalysts for H 2 O 2 Production. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378 (2176). https://doi.org/10.1098/rsta.2020.0062.
    (53) Tran, D. T.; Nguyen, D. C.; Le, H. T.; Kshetri, T.; Hoa, V. H.; Doan, T. L. L.; Kim, N. H.; Lee, J. H. Recent Progress on Single Atom/Sub-Nano Electrocatalysts for Energy Applications. Prog. Mater. Sci. 2021, 115 (April 2020), 100711. https://doi.org/10.1016/j.pmatsci.2020.100711.
    (54) Ingle, A. A.; Ansari, S. Z.; Shende, D. Z.; Wasewar, K. L.; Pandit, A. B. Progress and Prospective of Heterogeneous Catalysts for H2O2 Production via Anthraquinone Process. Environ. Sci. Pollut. Res. 2022, 29 (57), 86468–86484. https://doi.org/10.1007/s11356-022-21354-z.
    (55) Jeon, T. H.; Kim, B.; Kim, C.; Xia, C.; Wang, H.; Alvarez, P. J. J.; Choi, W. Solar Photoelectrochemical Synthesis of Electrolyte-Free H2O2aqueous Solution without Needing Electrical Bias and H2. Energy Environ. Sci. 2021, 14 (5), 3110–3119. https://doi.org/10.1039/d0ee03567j.
    (56) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nat. Mater. 2013, 12 (12), 1137–1143. https://doi.org/10.1038/nmat3795.
    (57) Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S. Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10 (21), 1–10. https://doi.org/10.1002/aenm.202000789.
    (58) Durai, L.; Gopalakrishnan, A.; Badhulika, S. Highly Stable NiCoZn Ternary Mixed-Metal-Oxide Nanorods as a Low-Cost, Non-Noble Electrocatalyst for Methanol Electro-Oxidation in Alkaline Medium. Energy and Fuels 2021, 35 (15), 12507–12515. https://doi.org/10.1021/acs.energyfuels.1c01506.
    (59) Yuda, A.; Ashok, A.; Kumar, A. A Comprehensive and Critical Review on Recent Progress in Anode Catalyst for Methanol Oxidation Reaction. Catal. Rev. - Sci. Eng. 2022, 64 (1), 126–228. https://doi.org/10.1080/01614940.2020.1802811.
    (60) Joshi, V. S.; Poudyal, D. C.; Satpati, A. K.; Patil, K. R.; Haram, S. K. Methanol Oxidation Reaction on Pt Based Electrocatalysts Modified Ultramicroelectrode (UME): Novel Electrochemical Method for Monitoring Rate of CO Adsorption. Electrochim. Acta 2018, 286, 287–295. https://doi.org/10.1016/j.electacta.2018.08.014.
    (61) Santos, M. C. L.; Nandenha, J.; Ayoub, J. M. S.; Assumpção, M. H. M. T.; Neto, A. O. Methanol Oxidation in Acidic and Alkaline Electrolytes Using PtRuIn/C Electrocatalysts Prepared by Borohydride Reduction Process. Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 2018, 46 (12), 1462–1471. https://doi.org/10.1016/s1872-5813(18)30060-4.
    (62) Burhan, H.; Ay, H.; Kuyuldar, E.; Sen, F. Monodisperse Pt-Co/GO Anodes with Varying Pt: Co Ratios as Highly Active and Stable Electrocatalysts for Methanol Electrooxidation Reaction. Sci. Rep. 2020, 10 (1), 1–8. https://doi.org/10.1038/s41598-020-63247-6.
    (63) Luo, L. M.; Zhan, W.; Zhang, R. H.; Hu, Q. Y.; Guo, Y. F.; Zhou, X. W. Enhanced Catalytic Activity and Stability of CoAuPd Nanocatalysts by Combining Methods of Heat Treatment and Dealloying. J. Catal. 2020, 381, 316–328. https://doi.org/10.1016/j.jcat.2019.11.010.
    (64) Jha, N.; Leela Mohana Reddy, A.; Shaijumon, M. M.; Rajalakshmi, N.; Ramaprabhu, S. Pt-Ru/Multi-Walled Carbon Nanotubes as Electrocatalysts for Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2008, 33 (1), 427–433. https://doi.org/10.1016/j.ijhydene.2007.07.064.
    (65) Abad, A.; Corma, A.; García, H. Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chem. - A Eur. J. 2008, 14 (1), 212–222. https://doi.org/10.1002/chem.200701263.
    (66) Duan, X.; Li, T.; Jiang, X.; Liu, X.; Xin, L.; Yang, H.; Kuang, Y.; Sun, X. Catalytic Applications of Single-Atom Metal-Anchored Hydroxides: Recent Advances and Perspective. Mater. Reports Energy 2022, 2 (3), 100146. https://doi.org/10.1016/j.matre.2022.100146.
    (67) Biswas, S.; Pal, A.; Pal, T. Supported Metal and Metal Oxide Particles with Proximity Effect for Catalysis. RSC Adv. 2020, 10 (58), 35449–35472. https://doi.org/10.1039/d0ra06168a.
    (68) Wang, Q.; Wang, G.; Tao, H.; Li, Z.; Han, L. Highly CO Tolerant PtRu/PtNi/C Catalyst for Polymer Electrolyte Membrane Fuel Cell. RSC Adv. 2017, 7 (14), 8453–8459. https://doi.org/10.1039/c6ra28198b.
    (69) Wang, G.; Takeguchi, T.; Zhang, Y.; Muhamad, E. N.; Sadakane, M.; Ye, S.; Ueda, W. Effect of SnO[Sub 2] Deposition Sequence in SnO[Sub 2]-Modified PtRu/C Catalyst Preparation on Catalytic Activity for Methanol Electro-Oxidation. J. Electrochem. Soc. 2009, 156 (7), B862. https://doi.org/10.1149/1.3133249.
    (70) Jiang, Q.; Jiang, L.; Wang, S.; Qi, J.; Sun, G. A Highly Active PtNi/C Electrocatalyst for Methanol Electro-Oxidation in Alkaline Media. Catal. Commun. 2010, 12 (1), 67–70. https://doi.org/10.1016/j.catcom.2010.08.001.
    (71) Jiang, Q.; Jiang, L.; Qi, J.; Wang, S.; Sun, G. Experimental and Density Functional Theory Studies on PtPb/C Bimetallic Electrocatalysts for Methanol Electrooxidation Reaction in Alkaline Media. Electrochim. Acta 2011, 56 (18), 6431–6440. https://doi.org/10.1016/j.electacta.2011.04.135.
    (72) Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly Crystalline PtCu Nanotubes with Three Dimensional Molecular Accessible and Restructured Surface for Efficient Catalysis. Energy Environ. Sci. 2017, 10 (8), 1751–1756. https://doi.org/10.1039/c7ee00573c.
    (73) Yang, H.; Dai, L.; Xu, D.; Fang, J.; Zou, S. Electrooxidation of Methanol and Formic Acid on PtCu Nanoparticles. Electrochim. Acta 2010, 55 (27), 8000–8004. https://doi.org/10.1016/j.electacta.2010.03.026.
    (74) Yao, P.; Cao, J.; Ruan, M.; Song, P.; Gong, X.; Han, C.; Xu, W. Engineering PtCu Nanoparticles for a Highly Efficient Methanol Electro-Oxidation Reaction. Faraday Discuss. 2021, 233, 232–243. https://doi.org/10.1039/d1fd00047k.
    (75) Li, Z.; Jiang, X.; Wang, X.; Hu, J.; Liu, Y.; Fu, G.; Tang, Y. Concave PtCo Nanocrosses for Methanol Oxidation Reaction. Appl. Catal. B Environ. 2020, 277 (April), 119135. https://doi.org/10.1016/j.apcatb.2020.119135.
    (76) Baronia, R.; Goel, J.; Tiwari, S.; Singh, P.; Singh, D.; Singh, S. P.; Singhal, S. K. Efficient Electro-Oxidation of Methanol Using PtCo Nanocatalysts Supported Reduced Graphene Oxide Matrix as Anode for DMFC. Int. J. Hydrogen Energy 2017, 42 (15), 10238–10247. https://doi.org/10.1016/j.ijhydene.2017.03.011.
    (77) Chen, Q.; Yang, Y.; Cao, Z.; Kuang, Q.; Du, G.; Jiang, Y.; Xie, Z.; Zheng, L. Excavated Cubic Platinum–Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity. Angew. Chemie - Int. Ed. 2016, 55 (31), 9021–9025. https://doi.org/10.1002/anie.201602592.
    (78) Zhang, J.; Li, H.; Ye, J.; Cao, Z.; Chen, J.; Kuang, Q.; Zheng, J.; Xie, Z. Sierpinski Gasket-like Pt–Ag Octahedral Alloy Nanocrystals with Enhanced Electrocatalytic Activity and Stability. Nano Energy 2019, 61 (April), 397–403. https://doi.org/10.1016/j.nanoen.2019.04.093.
    (79) Ma, H.; Zheng, Z.; Zhao, H.; Shen, C.; Chen, H.; Li, H.; Cao, Z.; Kuang, Q.; Lin, H.; Xie, Z. Trimetallic PtNiCo Branched Nanocages as Efficient and Durable Bifunctional Electrocatalysts towards Oxygen Reduction and Methanol Oxidation Reactions. J. Mater. Chem. A 2021, 9 (41), 23444–23450. https://doi.org/10.1039/d1ta07488a.
    (80) Sriphathoorat, R.; Wang, K.; Shen, P. K. Trimetallic Hollow Pt-Ni-Co Nanodendrites as Efficient Anodic Electrocatalysts. ACS Appl. Energy Mater. 2019, 2 (2), 961–965. https://doi.org/10.1021/acsaem.8b01741.
    (81) Zhang, T.; Sun, Y.; Li, X.; Li, X.; Liu, D.; Liu, G.; Li, C.; Fan, H. J.; Li, Y. PtPdAg Hollow Nanodendrites: Template-Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods 2020, 4 (1), 1–9. https://doi.org/10.1002/smtd.201900709.
    (82) Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. ACS Catal. 2018, 8 (8), 7578–7584. https://doi.org/10.1021/acscatal.8b00366.
    (83) Huang, J.; Liu, Y.; Xu, M.; Wan, C.; Liu, H.; Li, M.; Huang, Z.; Duan, X.; Pan, X.; Huang, Y. PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. Nano Lett. 2019, 19 (8), 5431–5436. https://doi.org/10.1021/acs.nanolett.9b01937.
    (84) Wang, W.; Chen, X.; Zhang, X.; Ye, J.; Xue, F.; Zhen, C.; Liao, X.; Li, H.; Li, P.; Liu, M.; Kuang, Q.; Xie, Z.; Xie, S. Quatermetallic Pt-Based Ultrathin Nanowires Intensified by Rh Enable Highly Active and Robust Electrocatalysts for Methanol Oxidation. Nano Energy 2020, 71 (January), 104623. https://doi.org/10.1016/j.nanoen.2020.104623.
    (85) Cuesta, A. At Least Three Contiguous Atoms Are Necessary for CO Formation during Methanol Electrooxidation on Platinum. J. Am. Chem. Soc. 2006, 128 (41), 13332–13333. https://doi.org/10.1021/ja0644172.
    (86) Sztaberek, L.; Mabey, H.; Beatrez, W.; Lore, C.; Santulli, A. C.; Koenigsmann, C. Sol-Gel Synthesis of Ruthenium Oxide Nanowires to Enhance Methanol Oxidation in Supported Platinum Nanoparticle Catalysts. ACS Omega 2019, 4 (10), 14226–14233. https://doi.org/10.1021/acsomega.9b01489.
    (87) Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D. S.; Xiao, F. S. Wet-Chemistry Strong Metal-Support Interactions in Titania-Supported Au Catalysts. J. Am. Chem. Soc. 2019, 141 (7), 2975–2983. https://doi.org/10.1021/jacs.8b10864.
    (88) Wu, P.; Tan, S.; Moon, J.; Yan, Z.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y.; Abney, C. W.; Wu, Z.; Savara, A.; Momen, A. M.; Jiang, D. en; Su, D.; Li, H.; Zhu, W.; Dai, S.; Zhu, H. Harnessing Strong Metal–Support Interactions via a Reverse Route. Nat. Commun. 2020, 11 (1), 1–10. https://doi.org/10.1038/s41467-020-16674-y.
    (89) Wu, S.; Liu, J.; Ye, Y.; Tian, Z.; Zhu, X.; Liang, C. Oxygen Defects Induce Strongly Coupled Pt/Metal Oxides/RGO Nanocomposites for Methanol Oxidation Reaction. ACS Appl. Energy Mater. 2019, 2 (8), 5577–5583. https://doi.org/10.1021/acsaem.9b00756.
    (90) Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal-Support Interactions in Metal/Oxide Catalysts and Oxide-Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catal. 2022, 12 (2), 1268–1287. https://doi.org/10.1021/acscatal.1c04854.
    (91) Pan, C. J.; Tsai, M. C.; Su, W. N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S. Y.; Hwang, B. J. Tuning/Exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186. https://doi.org/10.1016/j.jtice.2017.02.012.
    (92) Hsieh, B. J.; Tsai, M. C.; Pan, C. J.; Su, W. N.; Rick, J.; Chou, H. L.; Lee, J. F.; Hwang, B. J. Tuning Metal Support Interactions Enhances the Activity and Durability of TiO2-Supported Pt Nanocatalysts. Electrochim. Acta 2017, 224, 452–459. https://doi.org/10.1016/j.electacta.2016.12.020.
    (93) Suchorski, Y.; Kozlov, S. M.; Bespalov, I.; Datler, M.; Vogel, D.; Budinska, Z.; Neyman, K. M.; Rupprechter, G. The Role of Metal/Oxide Interfaces for Long-Range Metal Particle Activation during CO Oxidation. Nat. Mater. 2018, 17 (6), 519–522. https://doi.org/10.1038/s41563-018-0080-y.
    (94) An, K.; Alayoglu, S.; Musselwhite, N.; Na, K.; Somorjai, G. A. Designed Catalysts from Pt Nanoparticles Supported on Macroporous Oxides for Selective Isomerization of N-Hexane. J. Am. Chem. Soc. 2014, 136 (19), 6830–6833. https://doi.org/10.1021/ja5018656.
    (95) Pan, C.-J.; Tsai, M.-C.; Su, W.-N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S.-Y.; Hwang, B.-J. Tuning/Exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186. https://doi.org/10.1016/J.JTICE.2017.02.012.
    (96) Zhang, K.; Qiu, J.; Wu, J.; Deng, Y.; Wu, Y.; Yan, L. Morphological Tuning Engineering of Pt@TiO2/Graphene Catalysts with Optimal Active Surfaces of Support for Boosting Catalytic Performance for Methanol Oxidation. J. Mater. Chem. A 2022, 10 (8), 4254–4265. https://doi.org/10.1039/d1ta09359b.
    (97) Trung Tran, S. B.; Choi, H. S.; Oh, S. Y.; Moon, S. Y.; Park, J. Y. Iron-Doped ZnO as a Support for Pt-Based Catalysts to Improve Activity and Stability: Enhancement of Metal-Support Interaction by the Doping Effect. RSC Adv. 2018, 8 (38), 21528–21533. https://doi.org/10.1039/c8ra03664k.
    (98) Yang, J.; Li, W.; Wang, D.; Li, Y. Electronic Metal–Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. Adv. Mater. 2020, 32 (49), 1–29. https://doi.org/10.1002/adma.202003300.
    (99) Awoke, Y. A.; Tsai, M.-C.; Adam, D. B.; Ayele, A. A.; Yang, S.-C.; Huang, W.-H.; Chen, J.-L.; Pao, C.-W.; Mou, C. Y.; Su, W.-N.; Hwang, B. J. The Synergistic Effect Pt1-W Dual Sites as a Highly Active and Durable Catalyst for Electrochemical Methanol Oxidation. Electrochim. Acta 2022, 432, 141161. https://doi.org/10.1016/j.electacta.2022.141161.
    (100) Hsieh, B. J.; Tsai, M. C.; Pan, C. J.; Su, W. N.; Rick, J.; Lee, J. F.; Yang, Y. W.; Hwang, B. J. Platinum Loaded on Dual-Doped TiO2 as an Active and Durable Oxygen Reduction Reaction Catalyst. NPG Asia Mater. 2017, 9 (7). https://doi.org/10.1038/am.2017.78.
    (101) Garlisi, C.; Szlachetko, J.; Aubry, C.; Fernandes, D. L. A.; Hattori, Y.; Paun, C.; Pavliuk, M. V.; Rajput, N. S.; Lewin, E.; Sá, J.; Palmisano, G. N-TiO2/Cu-TiO2 Double-Layer Films: Impact of Stacking Order on Photocatalytic Properties. J. Catal. 2017, 353, 116–122. https://doi.org/10.1016/j.jcat.2017.06.028.
    (102) Zhang, L.; Zhao, X.; Yuan, Z.; Wu, M.; Zhou, H. Oxygen Defect-Stabilized Heterogeneous Single Atom Catalysts: Preparation, Properties and Catalytic Application. J. Mater. Chem. A 2021, 9 (7), 3855–3879. https://doi.org/10.1039/d0ta10541d.
    (103) Amin, R. S.; El-Khatib, K. M.; Siracusano, S.; Baglio, V.; Stassi, A.; Arico, A. S. Metal Oxide Promoters for Methanol Electro-Oxidation. Int. J. Hydrogen Energy 2014, 39 (18), 9782–9790. https://doi.org/10.1016/j.ijhydene.2014.04.100.
    (104) Brummel, O.; Waidhas, F.; Faisal, F.; Fiala, R.; Vorokhta, M.; Khalakhan, I.; Dubau, M.; Figueroba, A.; Kovács, G.; Aleksandrov, H. A.; Vayssilov, G. N.; Kozlov, S. M.; Neyman, K. M.; Matolín, V.; Libuda, J. Stabilization of Small Platinum Nanoparticles on Pt-CeO2 Thin Film Electrocatalysts during Methanol Oxidation. J. Phys. Chem. C 2016, 120 (35), 19723–19736. https://doi.org/10.1021/acs.jpcc.6b05962.
    (105) Liu, J.; Xu, L.; Li, X. Platinum Catalysts Supported on Mixed-Phase TiO2 Coated by Nitrogen-Doped Carbon Derived from NH2-MIL-125 for Methanol Oxidation. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 655 (August), 129986. https://doi.org/10.1016/j.colsurfa.2022.129986.
    (106) Thanh Ho, V. T.; Pillai, K. C.; Chou, H. L.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J.; Lee, J. F.; Sheu, H. S.; Chuang, W. T. Robust Non-Carbon Ti 0.7Ru 0.3O 2 Support with Co-Catalytic Functionality for Pt: Enhances Catalytic Activity and Durability for Fuel Cells. Energy Environ. Sci. 2011, 4 (10), 4194–4200. https://doi.org/10.1039/c1ee01522b.
    (107) Phan, V. T. T.; Pham, T. M.; Pham, H. Q.; Huynh, T. T.; Nguyen, T. H. T.; Ho, V. T. T. Low-Dose Ir-Doped TiO2 Supported Pt-Co Bimetallic Nanoparticles: A Highly Active and CO-Tolerant Electrocatalyst towards Methanol Oxidation Reaction. Int. J. Energy Res. 2022, 46 (13), 19221–19232. https://doi.org/10.1002/er.8582.
    (108) Lu, Y.; Zhang, Z.; Wang, H.; Wang, Y. Toward Efficient Single-Atom Catalysts for Renewable Fuels and Chemicals Production from Biomass and CO2. Appl. Catal. B Environ. 2021, 292 (March), 120162. https://doi.org/10.1016/j.apcatb.2021.120162.
    (109) Liu, J. Single-Atom Catalysis for a Sustainable and Greener Future. Curr. Opin. Green Sustain. Chem. 2020, 22, 54–64. https://doi.org/10.1016/j.cogsc.2020.01.004.
    (110) Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X. Single-Atom Catalysts: From Design to Application; Springer Singapore, 2019; Vol. 2. https://doi.org/10.1007/s41918-019-00050-6.
    (111) Qi, K.; Chhowalla, M.; Voiry, D. Single Atom Is Not Alone: Metal–Support Interactions in Single-Atom Catalysis. Mater. Today 2020, 40 (November), 173–192. https://doi.org/10.1016/j.mattod.2020.07.002.
    (112) Zhang, Q.; Guan, J. Single-Atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020, 30 (31). https://doi.org/10.1002/adfm.202000768.
    (113) Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Fine Size Control of Platinum on Carbon Nanotubes: From Single Atoms to Clusters. Angew. Chemie - Int. Ed. 2006, 45 (3), 407–411. https://doi.org/10.1002/anie.200501792.
    (114) Zhang, Z.; Liu, J.; Wang, J.; Wang, Q.; Wang, Y.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z.; Lim, J.; Zhao, T.; Ciucci, F. Single-Atom Catalyst for High-Performance Methanol Oxidation. Nat. Commun. 2021, 12 (1), 1–9. https://doi.org/10.1038/s41467-021-25562-y.
    (115) Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M.; Miller, B. K.; O’Mara, P. B.; Benedetti, T. M.; Huber, D. L.; Zhang, W.; Smith, S. C.; Gooding, J. J.; Schuhmann, W.; Tilley, R. D. A Single-Pt-Atom-on-Ru-Nanoparticle Electrocatalyst for CO-Resilient Methanol Oxidation. Nat. Catal. 2022, 5 (3), 231–237. https://doi.org/10.1038/s41929-022-00756-9.
    (116) Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118 (5), 2302–2312. https://doi.org/10.1021/acs.chemrev.7b00488.
    (117) Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.; Liang, W.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S.; Wang, H. Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nat. Commun. 2019, 10 (1). https://doi.org/10.1038/s41467-019-11992-2.
    (118) Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H 2O 2 Production. J. Am. Chem. Soc. 2011, 133 (48), 19432–19441. https://doi.org/10.1021/ja206477z.
    (119) Kim, J. H.; Shin, D.; Lee, J.; Baek, D. S.; Shin, T. J.; Kim, Y. T.; Jeong, H. Y.; Kwak, J. H.; Kim, H.; Joo, S. H. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano 2020, 14 (2), 1990–2001. https://doi.org/10.1021/acsnano.9b08494.
    (120) Song, M.; Liu, W.; Zhang, J.; Zhang, C.; Huang, X.; Wang, D. Single-Atom Catalysts for H2O2 Electrosynthesis via Two-Electron Oxygen Reduction Reaction. Adv. Funct. Mater. 2023. https://doi.org/10.1002/adfm.202212087.
    (121) Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning Selectivity of Electrochemical Reactions by Atomically Dispersed Platinum Catalyst. Nat. Commun. 2016, 7 (Iek 11), 1–9. https://doi.org/10.1038/ncomms10922.
    (122) Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; Chen, C.; Wang, D.; Li, Y. High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem 2019, 5 (8), 2099–2110. https://doi.org/10.1016/j.chempr.2019.04.024.
    (123) Lim, J. S.; Sa, Y. J.; Joo, S. H. Catalyst Design, Measurement Guidelines, and Device Integration for H2O2 Electrosynthesis from Oxygen Reduction. Cell Reports Phys. Sci. 2022, 3 (8), 100987. https://doi.org/10.1016/j.xcrp.2022.100987.
    (124) Gao, J.; Yang, H. bin; Huang, X.; Hung, S. F.; Cai, W.; Jia, C.; Miao, S.; Chen, H. M.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem 2020, 6 (3), 658–674. https://doi.org/10.1016/j.chempr.2019.12.008.
    (125) Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S. Z. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. J. Am. Chem. Soc. 2021, 143 (20), 7819–7827. https://doi.org/10.1021/jacs.1c03135.
    (126) Sun, Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X.; Moeller, T.; Bernsmeier, D.; Rossmeisl, J.; Jaouen, F.; Strasser, P. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. J. Am. Chem. Soc. 2019, 141 (31), 12372–12381. https://doi.org/10.1021/jacs.9b05576.
    (127) Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S.; Cho, S. P.; Yoo, J. S.; Sung, Y. E.; Hyeon, T. Atomic-Level Tuning of Co–N–C Catalyst for High-Performance Electrochemical H2O2 Production. Nat. Mater. 2020, 19 (4), 436–442. https://doi.org/10.1038/s41563-019-0571-5.
    (128) Zhang, Q.; Tan, X.; Bedford, N. M.; Han, Z.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Direct Insights into the Role of Epoxy Groups on Cobalt Sites for Acidic H2O2 Production. Nat. Commun. 2020, 11 (4181), 1–11. https://doi.org/10.1038/s41467-020-17782-5.
    (129) Liu, C.; Li, H.; Liu, F.; Chen, J.; Yu, Z.; Yuan, Z.; Wang, C.; Zheng, H.; Henkelman, G.; Wei, L.; Chen, Y. Intrinsic Activity of Metal Centers in Metal-Nitrogen-Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. J. Am. Chem. Soc. 2020, 142 (52), 21861–21871. https://doi.org/10.1021/jacs.0c10636.
    (130) Cao, P.; Quan, X.; Nie, X.; Zhao, K.; Liu, Y.; Chen, S.; Yu, H.; Chen, J. G. Metal Single-Site Catalyst Design for Electrocatalytic Production of Hydrogen Peroxide at Industrial-Relevant Currents. Nat. Commun. 2023, 14 (1), 1–12. https://doi.org/10.1038/s41467-023-35839-z.
    (131) Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M. A. Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catal. 2014, 4 (10), 3749–3754. https://doi.org/10.1021/cs5008206.
    (132) Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, Di.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1 (2), 156–162. https://doi.org/10.1038/s41929-017-0017-x.
    (133) Yang, N.; Zhu, X.; Wang, G.; Zhou, L.; Zhu, X.; Pan, J.; Yu, W.; Xia, C.; Tian, C. Pyrolysis-Free Mechanochemical Conversion of Small Organic Molecules into Metal-Free Heteroatom-Doped Mesoporous Carbons for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Mater. Lett. 2023, 5 (2), 379–387. https://doi.org/10.1021/acsmaterialslett.2c01005.
    (134) Yang, C.; Tao, S.; Huang, N.; Zhang, X.; Duan, J.; Makiura, R.; Maenosono, S. Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Appl. Nano Mater. 2020, 3 (6), 5481–5488. https://doi.org/10.1021/acsanm.0c00786.
    (135) Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-Based Oxygen Reduction Electrocatalysts. Nat. Catal. 2018, 1 (4), 282–290. https://doi.org/10.1038/s41929-018-0044-2.
    (136) Miao, J.; Zhu, H.; Tang, Y.; Chen, Y.; Wan, P. Graphite Felt Electrochemically Modified in H2SO4 Solution Used as a Cathode to Produce H2O2 for Pre-Oxidation of Drinking Water. Chem. Eng. J. 2014, 250, 312–318. https://doi.org/10.1016/j.cej.2014.03.043.
    (137) Zhang, D.; Tsounis, C.; Ma, Z.; Djaidiguna, D.; Bedford, N. M.; Thomsen, L.; Lu, X.; Chu, D.; Amal, R.; Han, Z. Highly Selective Metal-Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small 2022, 18 (2105082), 1–10. https://doi.org/10.1002/smll.202105082.
    (138) Lee, K.; Lim, J.; Lee, M. J.; Ryu, K.; Lee, H.; Kim, J. Y.; Ju, H.; Cho, H. S.; Kim, B. H.; Hatzell, M. C.; Kang, J.; Lee, S. W. Structure-Controlled Graphene Electrocatalysts for High-Performance H2O2 Production. Energy Environ. Sci. 2022, 15 (7), 2858–2866. https://doi.org/10.1039/d2ee00548d.
    (139) Sa, Y. J.; Kim, J. H.; Joo, S. H. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angew. Chemie - Int. Ed. 2019, 58 (4), 1100–1105. https://doi.org/10.1002/anie.201812435.
    (140) Zhao, H.; Shen, X.; Chen, Y.; Zhang, S. N.; Gao, P.; Zhen, X.; Li, X. H.; Zhao, G. A COOH-Terminated Nitrogen-Doped Carbon Aerogel as a Bulk Electrode for Completely Selective Two-Electron Oxygen Reduction to H2O2. Chem. Commun. 2019, 55 (44), 6173–6176. https://doi.org/10.1039/c9cc02580d.
    (141) Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Adv. Sci. 2021, 8 (15), 1–26. https://doi.org/10.1002/advs.202100076.
    (142) Lv, Q.; Wang, N.; Si, W.; Hou, Z.; Li, X.; Wang, X.; Zhao, F.; Yang, Z.; Zhang, Y.; Huang, C. Pyridinic Nitrogen Exclusively Doped Carbon Materials as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Batteries. Appl. Catal. B Environ. 2020, 261 (August 2019), 118234. https://doi.org/10.1016/j.apcatb.2019.118234.
    (143) Lim, D. H.; Kim, Y. J.; Kim, Y. A.; Hwang, K.; Park, J. J.; Kim, D. Y. Structural Insight into Aggregation and Orientation of TPD-Based Conjugated Polymers for Efficient Charge-Transporting Properties. Chem. Mater. 2019, 31 (13), 4629–4638. https://doi.org/10.1021/acs.chemmater.8b04605.
    (144) Sun, Y.; Li, S.; Jovanov, Z. P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Stefanie, K.; Strasser, P. Structure , Activity , and Faradaic Efficiency of Nitrogen- Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. https://doi.org/10.1002/cssc.201801583.
    (145) Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H. Graphitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon N. Y. 2020, 163, 154–161. https://doi.org/10.1016/j.carbon.2020.02.084.
    (146) Sun, Y.; Li, S.; Jovanov, Z. P.; Bernsmeier, D.; Wang, H.; Paul, B.; Wang, X.; Stefanie, K.; Strasser, P. Structure , Activity , and Faradaic Efficiency of Nitrogen- Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. 2018, 3388–3395. https://doi.org/10.1002/cssc.201801583.
    (147) Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Roldan Cuenya, B.; Strasser, P. Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catal. 2018, 8 (4), 2844–2856. https://doi.org/10.1021/acscatal.7b03464.
    (148) Zhang, Y.; Pang, Y.; Xia, D. Regulable Pyrrolic-N-Doped Carbon Materials as an Efficient Electrocatalyst for Selective O 2. New J. Chem. 2022, 46, 14510–14516. https://doi.org/10.1039/d2nj02393h.
    (149) Hu, Y.; Zhang, J.; Shen, T.; Li, Z.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. Efficient Electrochemical Production of H2O2on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Appl. Mater. Interfaces 2021, 13 (25), 29551–29557. https://doi.org/10.1021/acsami.1c05353.
    (150) Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 2000789 (10), 1–10. https://doi.org/10.1002/aenm.202000789.
    (151) Khazaee, M.; Xia, W.; Lackner, G.; Mendes, R. G.; Rummeli, M.; Muhler, M.; Lupascu, D. C. Dispersibility of Vapor Phase Oxygen and Nitrogen Functionalized Multi-Walled Carbon Nanotubes in Various Organic Solvents. Sci. Rep. 2016, 6 (26208), 1–10. https://doi.org/10.1038/srep26208.
    (152) Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. N,F-Codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustain. Chem. Eng. 2020, 8 (7), 2883–2891. https://doi.org/10.1021/acssuschemeng.9b07047.
    (153) Zhao, H.; Yuan, Z. Y. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem 2021, 14 (7), 1616–1633. https://doi.org/10.1002/cssc.202100055.
    (154) Chen, S.; Chen, Z.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustain. Chem. Eng. 2018, 6 (1), 311–317. https://doi.org/10.1021/acssuschemeng.7b02517.
    (155) Zhang, D.; Tsounis, C.; Ma, Z.; Djaidiguna, D.; Bedford, N. M.; Thomsen, L.; Lu, X.; Chu, D.; Amal, R.; Han, Z. Highly Selective Metal-Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small 2022, 18 (1). https://doi.org/10.1002/smll.202105082.
    (156) Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E.; Sinclair, R.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2018, 140 (25), 7851–7859. https://doi.org/10.1021/jacs.8b02798.
    (157) Zhang, Z.; Chen, Y.; Zhou, L.; Chen, C.; Han, Z.; Zhang, B.; Wu, Q.; Yang, L.; Du, L.; Bu, Y.; Wang, P.; Wang, X.; Yang, H.; Hu, Z. The Simplest Construction of Single-Site Catalysts by the Synergism of Micropore Trapping and Nitrogen Anchoring. Nat. Commun. 2019, 10 (1), 1–7. https://doi.org/10.1038/s41467-019-09596-x.
    (158) Lekha, L.; Kanmani Raja, K.; Rajagopal, G.; Easwaramoorthy, D. Schiff Base Complexes of Rare Earth Metal Ions: Synthesis, Characterization and Catalytic Activity for the Oxidation of Aniline and Substituted Anilines. J. Organomet. Chem. 2014, 753, 72–80. https://doi.org/10.1016/j.jorganchem.2013.12.014.
    (159) Al-Obaidi, O. H. S. Binuclear Cu(II) and Co(II) Complexes of Tridentate Heterocyclic Shiff Base Derived from Salicylaldehyde with 4-Aminoantipyrine. Bioinorg. Chem. Appl. 2012, 2012, 1–7. https://doi.org/10.1155/2012/601879.
    (160) Yang, H.; Shang, L.; Zhang, Q.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. A Universal Ligand Mediated Method for Large Scale Synthesis of Transition Metal Single Atom Catalysts. Nat. Commun. 2019, 10 (1), 1–9. https://doi.org/10.1038/s41467-019-12510-0.
    (161) Al-Masoudi, W. A.; Al-Diwan, M. A.; Khayoon, O. S. Synthesis, Characterization and Acute Toxicity of New Schiff Base Derived from L-Arginine and Vanillin. Eur. J. Chem. 2016, 7 (3), 280–282. https://doi.org/10.5155/eurjchem.7.3.280-282.1431.
    (162) New, S. Y.; Thio, Y.; Koh, L. L.; Andy Hor, T. S.; Xue, F. Supramolecular Assembly of a New Series of Copper-l-Arginine Schiff Bases. CrystEngComm 2011, 13 (6), 2114–2122. https://doi.org/10.1039/c0ce00444h.
    (163) Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, Di.; Liu, Y.; Jaramillo, T. F.; Nørskov, J. K.; Cui, Y. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1 (2), 156–162. https://doi.org/10.1038/s41929-017-0017-x.
    (164) Unmüssig, T.; Melke, J.; Fischer, A. Synthesis of Pt@TiO2 Nanocomposite Electrocatalysts for Enhanced Methanol Oxidation by Hydrophobic Nanoreactor Templating. Phys. Chem. Chem. Phys. 2019, 21 (25), 13555–13568. https://doi.org/10.1039/c9cp00502a.
    (165) Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z.; Amal, R.; Dou, S. X.; Dai, L. Highly Efficient and Selective Electrocatalytic Hydrogen Peroxide Production on Co-O-C Active Centers on Graphene Oxide. Commun. Chem. 2022, 5 (1). https://doi.org/10.1038/s42004-022-00645-z.
    (166) Yaqoob, L.; Noor, T.; Iqbal, N. Recent Progress in Development of Efficient Electrocatalyst for Methanol Oxidation Reaction in Direct Methanol Fuel Cell. Int. J. Energy Res. 2021, 45 (5), 6550–6583. https://doi.org/10.1002/er.6316.
    (167) Zhou, X.; Chen, L.; Sterbinsky, G. E.; Mukherjee, D.; Unocic, R. R.; Tait, S. L. Pt-Ligand Single-Atom Catalysts: Tuning Activity by Oxide Support Defect Density. Catal. Sci. Technol. 2020, 10 (10), 3353–3365. https://doi.org/10.1039/c9cy02594d.
    (168) Chen, Y. N.; Zhang, X.; Zhou, Z. Carbon-Based Substrates for Highly Dispersed Nanoparticle and Even Single-Atom Electrocatalysts. Small Methods 2019, 3 (9), 1–9. https://doi.org/10.1002/smtd.201900050.
    (169) Kaur, B.; Srivastava, R.; Satpati, B. Highly Efficient CeO2 Decorated Nano-ZSM-5 Catalyst for Electrochemical Oxidation of Methanol. ACS Catal. 2016, 6 (4), 2654–2663. https://doi.org/10.1021/acscatal.6b00525.
    (170) Kim, J.; Kim, H. E.; Lee, H. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions. ChemSusChem 2018, 11 (1), 104–113. https://doi.org/10.1002/cssc.201701306.
    (171) Evarts, S. E.; Kendrick, I.; Wallstrom, B. L.; Mion, T.; Abedi, M.; Dimakis, N.; Smotkin, E. S. Ensemble Site Requirements for Oxidative Adsorption of Methanol and Ethanol on Pt Membrane Electrode Assemblies. ACS Catal. 2012, 2 (5), 701–707. https://doi.org/10.1021/cs3000478.
    (172) Du, B.; Rabb, S. A.; Zangmeister, C.; Tong, Y. A Volcano Curve: Optimizing Methanol Electro-Oxidation on Pt-Decorated Ru Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11 (37), 8231–8239. https://doi.org/10.1039/b816531a.
    (173) Cohen, J. L.; Volpe, D. J.; Abruña, H. D. Electrochemical Determination of Activation Energies for Methanol Oxidation on Polycrystalline Platinum in Acidic and Alkaline Electrolytes. Phys. Chem. Chem. Phys. 2007, 9 (1), 49–77. https://doi.org/10.1039/b612040g.
    (174) Yang, W.; Li, J.; Cui, X.; Yang, C.; Liu, Y.; Zeng, X.; Zhang, Z.; Zhang, Q. Fine-Tuning Inverse Metal-Support Interaction Boosts Electrochemical Transformation of Methanol into Formaldehyde Based on Density Functional Theory. Chinese Chem. Lett. 2021, 32 (8), 2489–2494. https://doi.org/10.1016/j.cclet.2020.12.057.
    (175) Han, B.; Guo, Y.; Huang, Y.; Xi, W.; Xu, J.; Luo, J.; Qi, H.; Ren, Y.; Liu, X.; Qiao, B.; Zhang, T. Strong Metal–Support Interactions between Pt Single Atoms and TiO 2 . Angew. Chemie 2020, 132 (29), 11922–11927. https://doi.org/10.1002/ange.202003208.
    (176) Pham, H. Q.; Huynh, T. T.; Van Nguyen, A.; Van Thuan, T.; Bach, L. G.; Thanh Ho, V. T.; Zheng, Y.; Wan, X.; Cheng, X.; Cheng, K.; Liu, Z.; Dai, Z.; Huynh, T. T.; Pham, H. Q.; Nguyen, A. Van; Bach, L. G.; Ho, V. T. T. Advanced Nanoelectrocatalyst of Pt Nanoparticles Supported on Robust Ti 0.7 Ir 0.3 O 2 as a Promising Catalyst for Fuel Cells. Ind. Eng. Chem. Res. 2019, 10 (2), 675–684. https://doi.org/10.1021/acs.iecr.8b05486.
    (177) Huynh, T. T.; Pham, H. Q.; Van Nguyen, A.; Ngoc Mai, A. T.; Nguyen, S. T.; Bach, L. G.; Vo, D. V. N.; Thanh Ho, V. T. High Conductivity and Surface Area of Ti0.7W0.3O2 Mesoporous Nanostructures Support for Pt toward Enhanced Methanol Oxidation in DMFCs. Int. J. Hydrogen Energy 2019, 44 (37), 20933–20943. https://doi.org/10.1016/j.ijhydene.2018.10.029.
    (178) Le, N. T. H.; Thanh, T. D.; Pham, V. T.; Phan, T. L.; Lam, V. D.; Manh, D. H.; Anh, T. X.; Le, T. K. C.; Thammajak, N.; Hong, L. V.; Yu, S. C. Structure and High Photocatalytic Activity of (N, Ta)-Doped TiO2 Nanoparticles. J. Appl. Phys. 2016, 120 (14), 142110-(1-6). https://doi.org/10.1063/1.4961718.
    (179) Thind, S. S.; Wu, G.; Chen, A. Synthesis of Mesoporous Nitrogen-Tungsten Co-Doped TiO 2 Photocatalysts with High Visible Light Activity. Appl. Catal. B Environ. 2012, 111–112, 38–45. https://doi.org/10.1016/j.apcatb.2011.09.016.
    (180) Lang, X.; Liang, Y.; Sun, L.; Zhou, S.; Lau, W.-M. Interplay between Methanol and Anatase TiO 2 (101) Surface: The Effect of Subsurface Oxygen Vacancy . J. Phys. Chem. C 2017, 121 (11), 6072–6080. https://doi.org/10.1021/acs.jpcc.6b11356.
    (181) Tsai, M. C.; Rick, J.; Su, W. N.; Hwang, B. J. Design of Transition-Metal-Doped TiO2 as a Multipurpose Support for Fuel Cell Applications: Using a Computational High-Throughput Material Screening Approach. Mol. Syst. Des. Eng. 2017, 2 (4), 449–456. https://doi.org/10.1039/c7me00039a.
    (182) Pham, H. Q.; Huynh, T. T.; Mai, A. T. N.; Ngo, T. M.; Bach, L. G.; Ho, V. T. T. Wire-like Pt on Mesoporous Ti0.7W0.3O2 Nanomaterial with Compelling Electro-Activity for Effective Alcohol Electro-Oxidation. Sci. Rep. 2019, 9 (1), 1–9. https://doi.org/10.1038/s41598-019-51235-4.
    (183) Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110). Phys. Rev. Lett. 2001, 87 (26), 266104-1-266104–4. https://doi.org/10.1103/PhysRevLett.87.266104.
    (184) Guo, J.; Liu, H.; Li, D.; Wang, J.; Djitcheu, X.; He, D.; Zhang, Q. A Minireview on the Synthesis of Single Atom Catalysts. RSC Adv. 2022, 12 (15), 9373–9394. https://doi.org/10.1039/d2ra00657j.
    (185) Lu, Y.; Wang, J.; Yu, L.; Kovarik, L.; Zhang, X.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T.; Dagle, V.; Xin, H.; Karim, A. M. Identification of the Active Complex for CO Oxidation over Single-Atom Ir-on-MgAl 2 O 4 Catalysts. Nat. Catal. 2019, 2 (2), 149–156. https://doi.org/10.1038/s41929-018-0192-4.
    (186) Cao, W.; Lin, L.; Qi, H.; He, Q.; Wu, Z.; Wang, A.; Luo, W.; Zhang, T. In-Situ Synthesis of Single-Atom Ir by Utilizing Metal-Organic Frameworks: An Acid-Resistant Catalyst for Hydrogenation of Levulinic Acid to Γ-Valerolactone. J. Catal. 2019, 373, 161–172. https://doi.org/10.1016/j.jcat.2019.03.035.
    (187) Chen, L.; Ali, I. S.; Sterbinsky, G. E.; Zhou, X.; Wasim, E.; Tait, S. L. Ligand-Coordinated Ir Single-Atom Catalysts Stabilized on Oxide Supports for Ethylene Hydrogenation and Their Evolution under a Reductive Atmosphere. Catal. Sci. Technol. 2021, 11 (6), 2081–2093. https://doi.org/10.1039/d0cy01132k.
    (188) Tian, S.; Gong, W.; Chen, W.; Lin, N.; Zhu, Y.; Feng, Q.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J.; Yan, W.; Zhao, H.; Wang, D.; Li, Y. Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal-Support Interactions. ACS Catal. 2019, 5223–5230. https://doi.org/10.1021/acscatal.9b00322.
    (189) Sangkhun, W.; Ponchai, J.; Phawa, C.; Pengsawang, A.; Faungnawakij, K.; Butburee, T. Race on High-Loading Metal Single Atoms and Successful Preparation Strategies. ChemCatChem 2022, 14 (2). https://doi.org/10.1002/cctc.202101266.
    (190) Batalović, K.; Bundaleski, N.; Radaković, J.; Abazović, N.; Mitrić, M.; Silva, R. A.; Savić, M.; Belošević-Čavor, J.; Rakočević, Z.; Rangel, C. M. Modification of N-Doped TiO2 Photocatalysts Using Noble Metals (Pt, Pd) - A Combined XPS and DFT Study. Phys. Chem. Chem. Phys. 2017, 19 (10), 7062–7071. https://doi.org/10.1039/c7cp00188f.
    (191) Zheng, L.; Xiong, L.; Liu, Q.; Xu, J.; Kang, X.; Wang, Y.; Yang, S.; Xia, J.; Deng, Z. Facile Preparation of Rutile Ti0.7W0.3O2 with High Conductivity and Its Effect on Enhanced Electrocatalytic Activity of Pt as Catalyst Support. Electrochim. Acta 2014, 150, 197–204. https://doi.org/10.1016/j.electacta.2014.10.103.
    (192) El Mragui, A.; Zegaoui, O.; Daou, I.; Esteves da Silva, J. C. G. Preparation, Characterization, and Photocatalytic Activity under UV and Visible Light of Co, Mn, and Ni Mono-Doped and (P,Mo) and (P,W) Co-Doped TiO2 Nanoparticles: A Comparative Study. Environ. Sci. Pollut. Res. 2021, 28 (20), 25130–25145. https://doi.org/10.1007/s11356-019-04754-6.
    (193) Cai, J.; Cao, A.; Wang, Z.; Lu, S.; Jiang, Z.; Dong, X. Y.; Li, X.; Zang, S. Q. Surface Oxygen Vacancies Promoted Pt Redispersion to Single-Atoms for Enhanced Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2021, 9 (24), 13890–13897. https://doi.org/10.1039/d1ta01400e.
    (194) Shen, Y.; Xiong, T.; Li, T.; Yang, K. Tungsten and Nitrogen Co-Doped TiO2 Nano-Powders with Strong Visible Light Response. Appl. Catal. B Environ. 2008, 83 (3–4), 177–185. https://doi.org/10.1016/j.apcatb.2008.01.037.
    (195) Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An Overview of Metal Oxide Materials as Electrocatalysts and Supports for Polymer Electrolyte Fuel Cells. Energy Environ. Sci. 2014, 7 (8), 2535–2558. https://doi.org/10.1039/c3ee43886d.
    (196) Kubacka, A.; Colón, G.; Fernández-García, M. N- and/or W-(Co)Doped TiO2-Anatase Catalysts: Effect of the Calcination Treatment on Photoactivity. Appl. Catal. B Environ. 2010, 95 (3–4), 238–244. https://doi.org/10.1016/j.apcatb.2009.12.028.
    (197) Díaz-Reyes, J. Obtaining of Films of Tungsten Trioxide (WO3) by Resistive Heating of a Tungsten Filament. Superf. y Vacío 2008, 21 (2), 12–17.
    (198) Yang, X. L.; Dai, W. L.; Guo, C.; Chen, H.; Cao, Y.; Li, H.; He, H.; Fan, K. Synthesis of Novel Core-Shell Structured WO3/TiO2 Spheroids and Its Application in the Catalytic Oxidation of Cyclopentene to Glutaraldehyde by Aqueous H2O2. J. Catal. 2005, 234 (2), 438–450. https://doi.org/10.1016/j.jcat.2005.06.035.
    (199) Yu, F. Y.; Lang, Z. L.; Yin, L. Y.; Feng, K.; Xia, Y. J.; Tan, H. Q.; Zhu, H. T.; Zhong, J.; Kang, Z. H.; Li, Y. G. Pt-O Bond as an Active Site Superior to Pt0 in Hydrogen Evolution Reaction. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-019-14274-z.
    (200) Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J. P.; Strasser, P. Quantifying the Density and Utilization of Active Sites in Non-Precious Metal Oxygen Electroreduction Catalysts. Nat. Commun. 2015, 6 (8618), 1–9. https://doi.org/10.1038/ncomms9618.
    (201) Thang, H. V.; Pacchioni, G.; DeRita, L.; Christopher, P. Nature of Stable Single Atom Pt Catalysts Dispersed on Anatase TiO2. J. Catal. 2018, 367, 104–114. https://doi.org/10.1016/j.jcat.2018.08.025.
    (202) Song, Z.; Banis, M. N.; Zhang, L.; Wang, B.; Yang, L.; Banham, D.; Zhao, Y.; Liang, J.; Zheng, M.; Li, R.; Ye, S.; Sun, X. Origin of Achieving the Enhanced Activity and Stability of Pt Electrocatalysts with Strong Metal-Support Interactions via Atomic Layer Deposition. Nano Energy 2018, 53 (September), 716–725. https://doi.org/10.1016/j.nanoen.2018.09.008.
    (203) Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T. K.; Liu, L. M.; Botton, G. A.; Sun, X. Platinum Single-Atom and Cluster Catalysis of the Hydrogen Evolution Reaction. Nat. Commun. 2016, 7, 1–9. https://doi.org/10.1038/ncomms13638.
    (204) Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y.; Sun, Y. Y.; Xia, X. H.; Chen, W. Electronic Metal–Support Interaction Modulates Single-Atom Platinum Catalysis for Hydrogen Evolution Reaction. Nat. Commun. 2021, 12 (1), 1–11. https://doi.org/10.1038/s41467-021-23306-6.
    (205) Cao, Y.; Wang, D.; Lin, Y.; Liu, W.; Cao, L.; Liu, X.; Zhang, W.; Mou, X.; Fang, S.; Shen, X.; Yao, T. Single Pt Atom with Highly Vacant D-Orbital for Accelerating Photocatalytic H2 Evolution. ACS Appl. Energy Mater. 2018, 1 (11), 6082–6088. https://doi.org/10.1021/acsaem.8b01143.
    (206) El Koura, Z.; Rossi, G.; Calizzi, M.; Amidani, L.; Pasquini, L.; Miotello, A.; Boscherini, F. XANES Study of Vanadium and Nitrogen Dopants in Photocatalytic TiO 2 Thin Films. Phys. Chem. Chem. Phys. 2018, 20 (1), 221–231. https://doi.org/10.1039/c7cp06742a.
    (207) Chergui, M. Emerging Photon Technologies for Chemical Dynamics. Faraday Discuss. 2014, 171, 11–40. https://doi.org/10.1039/c4fd00157e.
    (208) Cheng, X.; Yu, X.; Xing, Z.; Yang, L. Synthesis and Characterization of N-Doped TiO2 and Its Enhanced Visible-Light Photocatalytic Activity. Arab. J. Chem. 2016, 9, S1706–S1711. https://doi.org/10.1016/j.arabjc.2012.04.052.
    (209) Bharti, B.; Kumar, S.; Lee, H. N.; Kumar, R. Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment. Sci. Rep. 2016, 6 (August), 1–12. https://doi.org/10.1038/srep32355.
    (210) Chhina, H.; Campbell, S.; Kesler, O. Characterization of Nb and W Doped Titania as Catalyst Supports for Proton Exchange Membrane Fuel Cells. J. New Mater. Electrochem. Syst. 2009, 12 (4), 177–185. https://doi.org/10.14447/jnmes.v12i4.200.
    (211) Sathasivam, S.; Bhachu, D. S.; Lu, Y.; Chadwick, N.; Althabaiti, S. A.; Alyoubi, A. O.; Basahel, S. N.; Carmalt, C. J.; Parkin, I. P. Tungsten Doped TiO 2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Sci. Rep. 2015, 5 (November 2014), 1–10. https://doi.org/10.1038/srep10952.
    (212) Li, J.; Zhou, H.; Zhuo, H.; Wei, Z.; Zhuang, G.; Zhong, X.; Deng, S.; Li, X.; Wang, J. Oxygen Vacancies on TiO2 Promoted the Activity and Stability of Supported Pd Nanoparticles for the Oxygen Reduction Reaction. J. Mater. Chem. A 2018, 6 (5), 2264–2272. https://doi.org/10.1039/c7ta09831f.
    (213) Cai, J.; Cao, A.; Wang, Z.; Lu, S.; Jiang, Z.; Dong, X.-Y.; Li, X.; Zang, S.-Q. Surface Oxygen Vacancies Promoted Pt Redispersion to Single-Atoms for Enhanced Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2021, 9 (24), 13890–13897. https://doi.org/10.1039/d1ta01400e.
    (214) Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y.; Zheng, L.; Zhang, Q.; Gu, L.; Han, X.; Wang, D.; Li, Y. Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angew. Chemie - Int. Ed. 2020, 59 (3), 1295–1301. https://doi.org/10.1002/anie.201912439.
    (215) Yu, L.; Shao, Y.; Li, D. Direct Combination of Hydrogen Evolution from Water and Methane Conversion in a Photocatalytic System over Pt/TiO2. Appl. Catal. B Environ. 2017, 204, 216–223. https://doi.org/10.1016/j.apcatb.2016.11.039.
    (216) Liu, S.; Guo, E.; Yin, L. Tailored Visible-Light Driven Anatase TiO 2 Photocatalysts Based on Controllable Metal Ion Doping and Ordered Mesoporous Structure. J. Mater. Chem. 2012, 22 (11), 5031–5041. https://doi.org/10.1039/c2jm15965a.
    (217) Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-Atom Electrocatalysts. Angew. Chemie - Int. Ed. 2017, 56 (45), 13944–13960. https://doi.org/10.1002/anie.201703864.
    (218) Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions. Adv. Energy Mater. 2018, 8 (1), 1–8. https://doi.org/10.1002/aenm.201701476.
    (219) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes. Energy Environ. Sci. 2012, 5 (6), 7626–7636. https://doi.org/10.1039/c2ee21414h.
    (220) Khan, I. A.; Badshah, A.; Shah, F. U.; Assiri, M. A.; Nadeem, M. A. Zinc-Coordination Polymer-Derived Porous Carbon-Supported Stable PtM Electrocatalysts for Methanol Oxidation Reaction. ACS Omega 2021, 6 (10), 6780–6790. https://doi.org/10.1021/acsomega.0c05843.
    (221) Saraswathy, R.; Suman, R.; Malin Bruntha, P.; Khanna, D.; Chellasamy, V. Mn-Doped Nickeltitanate (Ni1−xMnxTiO3) as a Promising Support Material for PdSn Electrocatalysts for Methanol Oxidation in Alkaline Media. RSC Adv. 2021, 11 (46), 28829–28837. https://doi.org/10.1039/d1ra02883a.
    (222) Dao, D. Van; Le, T. D.; Adilbish, G.; Lee, I. H.; Yu, Y. T. Pt-Loaded Au@CeO2 Core-Shell Nanocatalysts for Improving Methanol Oxidation Reaction Activity. J. Mater. Chem. A 2019, 7 (47), 26996–27006. https://doi.org/10.1039/c9ta09333h.
    (223) Huang, T.; Mao, S.; Zhou, G.; Zhang, Z.; Wen, Z.; Huang, X.; Ci, S.; Chen, J. A High-Performance Catalyst Support for Methanol Oxidation with Graphene and Vanadium Carbonitride. Nanoscale 2015, 7 (4), 1301–1307. https://doi.org/10.1039/c4nr05244g.
    (224) Galvan, V.; Shrimant, B.; Bae, C.; Prakash, G. K. S. Ionomer Significance in Alkaline Direct Methanol Fuel Cell to Achieve High Power with a Quarternized Poly(Terphenylene) Membrane. ACS Appl. Energy Mater. 2021. https://doi.org/10.1021/acsaem.1c00681.
    (225) Pei, Z.; Ding, L.; Feng, W.; Weng, S.; Liu, P. Defect Self-Doped TiO2 for Visible Light Activity and Direct Noble Metal Anchoring. Phys. Chem. Chem. Phys. 2014, 16 (39), 21876–21881. https://doi.org/10.1039/c4cp02286f.
    (226) Oh, S.; Ha, H.; Choi, H.; Jo, C.; Cho, J.; Choi, H.; Ryoo, R.; Kim, H. Y.; Park, J. Y. Oxygen Activation on the Interface between Pt Nanoparticles and Mesoporous Defective TiO2 during CO Oxidation. J. Chem. Phys. 2019, 151 (23), 1–11. https://doi.org/10.1063/1.5131464.
    (227) Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118 (10), 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776.
    (228) Chang, C. R.; Long, B.; Yang, X. F.; Li, J. Theoretical Studies on the Synergetic Effects of Au-Pd Bimetallic Catalysts in the Selective Oxidation of Methanol. J. Phys. Chem. C 2015, 119 (28), 16072–16081. https://doi.org/10.1021/acs.jpcc.5b03965.
    (229) Ou, L. New Insights into the Pt-Catalyzed CH3OH Oxidation Mechanism: First-Principle Considerations on Thermodynamics, Kinetics, and Reversible Potentials. ACS Omega 2017, 3 (1), 886–897. https://doi.org/10.1021/acsomega.7b01725.
    (230) Metiu, H.; Chrétien, S.; Hu, Z.; Li, B.; Sun, X. Chemistry of Lewis Acid-Base Pairs on Oxide Surfaces. J. Phys. Chem. C 2012, 116 (19), 10439–10450. https://doi.org/10.1021/jp301341t.
    (231) Hage, R.; Lienke, A. Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching. Angew. Chemie - Int. Ed. 2005, 45 (2), 206–222. https://doi.org/10.1002/anie.200500525.
    (232) Wadnerkar, N.; Gueskine, V.; Głowacki, E. D.; Zozoulenko, I. Density Functional Theory Mechanistic Study on H2O2Production Using an Organic Semiconductor Epindolidione. J. Phys. Chem. A 2020, 124 (46), 9605–9610. https://doi.org/10.1021/acs.jpca.0c08496.
    (233) Luo, F.; Wagner, S.; Ju, W.; Primbs, M.; Li, S.; Wang, H.; Kramm, U. I.; Strasser, P. Kinetic Diagnostics and Synthetic Design of Platinum Group Metal-Free Electrocatalysts for the Oxygen Reduction Reaction Using Reactivity Maps and Site Utilization Descriptors. J. Am. Chem. Soc. 2022, 144 (30), 13487–13498. https://doi.org/10.1021/jacs.2c01594.
    (234) Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts. ACS Catal. 2019, 9 (12), 11042–11054. https://doi.org/10.1021/acscatal.9b02778.
    (235) Strasser, P.; Gliech, M.; Kuehl, S.; Moeller, T. Electrochemical Processes on Solid Shaped Nanoparticles with Defined Facets. Chem. Soc. Rev. 2018, 47 (3), 715–735. https://doi.org/10.1039/c7cs00759k.
    (236) Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catal. 2017, 7 (2), 1301–1307. https://doi.org/10.1021/acscatal.6b02899.
    (237) Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J.; Chen, M.; Myers, D.; Su, D. Environmental Science Cathode Catalysts Derived from Surfactant-Assisted MOFs : Carbon-Shell Confinement Strategy †. 2019, 250–260. https://doi.org/10.1039/c8ee02694g.
    (238) He, Y.; Wu, G. PGM-Free Oxygen-Reduction Catalyst Development for Proton- Exchange Membrane Fuel Cells : Challenges , Solutions , and Promises. 2022. https://doi.org/10.1021/accountsmr.1c00226.
    (239) Yang, X.; Zeng, Y.; Alnoush, W.; Hou, Y.; Higgins, D.; Wu, G. Tuning Two-Electron Oxygen-Reduction Pathways for H2O2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Adv. Mater. 2022, 34 (23), 1–22. https://doi.org/10.1002/adma.202107954.
    (240) Ai, F.; Wang, J. Insights into the Electrochemical Production of Hydrogen Peroxide over Single-Atom Co − N − C Catalysts with the Introduction of Carbon Vacancy Defect near the Co − N 4 Site. 2023. https://doi.org/10.1021/acs.jpclett.3c00044.
    (241) Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L.; Jadhav, A. R.; Liu, X.; Shao, X.; Liu, Y.; Yu, J.; Hwang, Y.; Bui, H. T. D.; Ajmal, S.; Kim, M. G.; Kim, S. G.; Park, G. S.; Kawazoe, Y.; Lee, H. Moving beyond Bimetallic-Alloy to Single-Atom Dimer Atomic-Interface for All-PH Hydrogen Evolution. Nat. Commun. 2021, 12 (1), 1–10. https://doi.org/10.1038/s41467-021-27145-3.
    (242) Zhu, X.; Zhang, X.; Zhao, C.; Liao, T.; Zhang, Y.; Lin, C.; Qi, C.; Qiu, P.; Li, X.; Luo, W. Single, Double and Triple Cobalt Atoms Confined in 2D Regular Framework for Oxygen Electrocatalysis. J. Alloys Compd. 2021, 872, 159689. https://doi.org/10.1016/j.jallcom.2021.159689.
    (243) Al-noor, T. H.; Jeboori, A. T. A.-; Sadawi, R. L. Synthesis and Characterization of Complexes of Schiff Base [ 1 , Methyl } -Phenol ] with Mn ( II ), Fe ( II ), Co ( II ), Cu ( II ), Zn ( II ), Cd ( II ), Ni ( II ), and Hg ( II ) Ions. Chem. Process Eng. Res. 2013, 13, 19–28.
    (244) Aboud, W.; Masoudi, A.; Ali, M.; Diwan, A.; Khayoon, O. S. European Journal of Chemistry. 2016, 7 (3), 280–282. https://doi.org/10.5155/eurjchem.7.3.280-282.1431.
    (245) Fattuoni, C.; Vascellari, S.; Pivetta, T. Synthesis, Protonation Constants and Biological Activity Determination of Amino Acid–Salicylaldehyde-Derived Schiff Bases. Amino Acids 2020, 52 (3), 397–407. https://doi.org/10.1007/s00726-019-02816-0.
    (246) Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Pazio, A.; Woźniak, K. The NMR and X-Ray Study of l-Arginine Derived Schiff Bases and Its Cadmium Complexes. J. Mol. Struct. 2014, 1063 (1), 145–152. https://doi.org/10.1016/j.molstruc.2014.01.058.
    (247) Gu, W.; Wang, X.; Wen, J.; Cao, S.; Jiao, L.; Wu, Y.; Wei, X.; Zheng, L.; Hu, L.; Zhang, L.; Zhu, C. Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level. 2021. https://doi.org/10.1021/acs.analchem.1c01835.
    (248) Tümer, M.; Köksal, H.; Sener, M. K.; Serin, S. Antimicrobial Activity Studies of the Binuclear Metal Complexes Derived from Tridentate Schiff Base Ligands. Transit. Met. Chem. 1999, 24 (4), 414–420. https://doi.org/10.1023/A:1006973823926.
    (249) Sarwar, A.; Bahron, H.; Nabi, N.; Naureen, B.; Sherino, B.; Ali, A.; Alias, Y. Solid State Dual Emissive Binuclear Cobalt (II) Azomethine Complexes: Synthesis, Characterization, Thermal Stabilities and Photoluminescence Studies. J. Mol. Struct. 2023, 1274, 134537. https://doi.org/10.1016/j.molstruc.2022.134537.
    (250) Zhou, Q.; Zhang, S.; Zhou, G.; Pang, H.; Zhang, M.; Xu, L.; Sun, K.; Tang, Y.; Huang, K. Interfacial Engineering of CoN/Co3O4 Heterostructured Hollow Nanoparticles Embedded in N-Doped Carbon Nanowires as a Bifunctional Oxygen Electrocatalyst for Rechargeable Liquid and Flexible All-Solid-State Zn-Air Batteries. Small 2023, 2301324, 1–11. https://doi.org/10.1002/smll.202301324.
    (251) Shang, S.; Wang, L.; Dai, W.; Chen, B.; Lv, Y.; Gao, S. High Catalytic Activity of Mesoporous Co-N/C Catalysts for Aerobic Oxidative Synthesis of Nitriles. Catal. Sci. Technol. 2016, 6 (14), 5746–5753. https://doi.org/10.1039/c6cy00195e.
    (252) Linder, C.; Rao, S. G.; le Febvrier, A.; Greczynski, G.; Sjövall, R.; Munktell, S.; Eklund, P.; Björk, E. M. Cobalt Thin Films as Water-Recombination Electrocatalysts. Surf. Coatings Technol. 2020, 404 (August). https://doi.org/10.1016/j.surfcoat.2020.126643.
    (253) Zhou, Y.; Tao, X.; Chen, G.; Lu, R.; Wang, D.; Chen, M. X.; Jin, E.; Yang, J.; Liang, H. W.; Zhao, Y.; Feng, X.; Narita, A.; Müllen, K. Multilayer Stabilization for Fabricating High-Loading Single-Atom Catalysts. Nat. Commun. 2020, 11 (1), 1–11. https://doi.org/10.1038/s41467-020-19599-8.
    (254) Wang, C.; Zhang, H.; Wang, J.; Zhao, Z.; Wang, J.; Zhang, Y.; Cheng, M.; Zhao, H.; Wang, J. Atomic Fe Embedded in Carbon Nanoshells-Graphene Nanomeshes with Enhanced Oxygen Reduction Reaction Performance. Chem. Mater. 2017, 29 (23), 9915–9922. https://doi.org/10.1021/acs.chemmater.7b03100.
    (255) Melke, J.; Peter, B.; Habereder, A.; Ziegler, J.; Fasel, C.; Nefedov, A.; Sezen, H.; Wöll, C.; Ehrenberg, H.; Roth, C. Metal-Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8 (1), 82–90. https://doi.org/10.1021/acsami.5b06225.
    (256) Zhou, J. G.; Fang, H. T.; Hu, Y. F.; Sham, T. K.; Wu, C. X.; Liu, M.; Li, F. Immobilization of RuO2 on Carbon Nanotube: An X-Ray Absorption near-Edge Structure Study. J. Phys. Chem. C 2009, 113 (24), 10747–10750. https://doi.org/10.1021/jp902871b.
    (257) Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene. Angew. Chemie - Int. Ed. 2017, 56 (25), 7121–7125. https://doi.org/10.1002/anie.201702430.
    (258) Zhang, L.; Shang, N.; Gao, S.; Wang, J.; Meng, T.; Du, C.; Shen, T.; Huang, J.; Wu, Q.; Wang, H.; Qiao, Y.; Wang, C.; Gao, Y.; Wang, Z. Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics. ACS Catal. 2020, 10 (15), 8672–8682. https://doi.org/10.1021/acscatal.0c00239.
    (259) Lu, F.; Zhang, Y.; Liu, S.; Lu, D.; Su, D.; Liu, M.; Zhang, Y.; Liu, P.; Wang, J. X.; Adzic, R. R.; Gang, O. Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. J. Am. Chem. Soc. 2017, 139 (21), 7310–7317. https://doi.org/10.1021/jacs.7b01735.
    (260) Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5 (6), 1486–1511. https://doi.org/10.1016/j.chempr.2019.03.002.
    (261) Exner, K. S. Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope. ACS Phys. Chem. Au 2022. https://doi.org/10.1021/acsphyschemau.2c00054.
    (262) Chang, Q.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X.; Denny, S. R.; Lee, J. H.; Gao, H.; Zhang, Y.; Xin, H. L.; Siahrostami, S.; Chen, J. G.; Chen, Z. Promoting H2O2 Production via 2-Electron Oxygen Reduction by Coordinating Partially Oxidized Pd with Defect Carbon. Nat. Commun. 2020, 11 (1), 1–9. https://doi.org/10.1038/s41467-020-15843-3.
    (263) Wu, Y.; Ding, Y.; Han, X.; Li, B.; Wang, Y.; Dong, S.; Li, Q.; Dou, S.; Sun, J.; Sun, J. Modulating Coordination Environment of Fe Single Atoms for High-Efficiency All-PH-Tolerated H2O2 Electrochemical Production. Appl. Catal. B Environ. 2022, 315 (May), 121578. https://doi.org/10.1016/j.apcatb.2022.121578.
    (264) Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the Electrochemical Synthesis of H2O2: Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Lett. 2014, 14 (3), 1603–1608. https://doi.org/10.1021/nl500037x.
    (265) Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H.; Voss, J.; Luntz, A. C.; McCloskey, B. D. Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide. ACS Catal. 2020, 10 (1), 852–863. https://doi.org/10.1021/acscatal.9b04106.
    (266) Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; Wang, D.; Li, Y. Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew. Chemie - Int. Ed. 2022, 61 (12). https://doi.org/10.1002/anie.202117347.
    (267) Wang, N.; Tang, P.; Zhao, C.; Zhang, Z.; Sun, G. An Environmentally Friendly Bleaching Process for Cotton Fabrics: Mechanism and Application of UV/H2O2 System. Cellulose 2020, 27 (2), 1071–1083. https://doi.org/10.1007/s10570-019-02812-3.
    (268) Research, G. V. Hydrogen Peroxide Market Size, and Share Report, 2021 - 2028; San Francisco, 2021. https://doi.org/GVR-4-68038-783-4.
    (269) Zhao, Q.; Wang, Y.; Lai, W. H.; Xiao, F.; Lyu, Y.; Liao, C.; Shao, M. Approaching a High-Rate and Sustainable Production of Hydrogen Peroxide: Oxygen Reduction on Co-N-C Single-Atom Electrocatalysts in Simulated Seawater. Energy Environ. Sci. 2021, 14 (10), 5444–5456. https://doi.org/10.1039/d1ee00878a.
    (270) Shen, H.; Pan, L.; Thomas, T.; Wang, J.; Guo, X.; Zhu, Y.; Luo, K.; Du, S.; Guo, H.; Hutchings, G. J.; Attfield, J. P.; Yang, M. Selective and Continuous Electrosynthesis of Hydrogen Peroxide on Nitrogen-Doped Carbon Supported Nickel. Cell Reports Phys. Sci. 2020, 1 (11), 100255. https://doi.org/10.1016/j.xcrp.2020.100255.
    (271) Zhang, J.; Liu, W.; He, F.; Song, M.; Huang, X.; Shen, T.; Li, J.; Zhang, C.; Zhang, J.; Wang, D. Highly Dispersed Co Atoms Anchored in Porous Nitrogen-Doped Carbon for Acidic H2O2 Electrosynthesis. Chem. Eng. J. 2022, 438, 1–29. https://doi.org/10.1016/j.cej.2022.135619.
    (272) Zhu, W.; Chen, S. Recent Progress of Single-Atom Catalysts in the Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Electroanalysis 2020, 32 (12), 2591–2602. https://doi.org/10.1002/elan.202060334.
    (273) Sun, K.; Xu, W.; Lin, X.; Tian, S.; Lin, W. F.; Zhou, D.; Sun, X. Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Two-Electron Transfer Pathway on Carbon-Based Single-Atom Catalysts. Adv. Mater. Interfaces 2021, 8 (8), 1–16. https://doi.org/10.1002/admi.202001360.
    (274) Das, D.; Raut, V. Hydrogen Peroxide (H2O2) Production in Oxygen Reduction Reaction (ORR) Proceeding in Alkaline Medium Employing Zinc Based Metal-Organic Framework. AIP Conf. Proc. 2019, 2115 (2019), 1–5. https://doi.org/10.1063/1.5113385.
    (275) Dong, K.; Lei, Y.; Zhao, H.; Liang, J.; Ding, P.; Liu, Q.; Xu, Z.; Lu, S.; Li, Q.; Sun, X. Noble-Metal-Free Electrocatalysts toward H2O2production. J. Mater. Chem. A 2020, 8 (44), 23123–23141. https://doi.org/10.1039/d0ta08894c.
    (276) Lv, Q.; Si, W.; He, J.; Sun, L.; Zhang, C.; Wang, N.; Yang, Z.; Li, X.; Wang, X.; Deng, W.; Long, Y.; Huang, C.; Li, Y. Selectively Nitrogen-Doped Carbon Materials as Superior Metal-Free Catalysts for Oxygen Reduction. Nat. Commun. 2018, 9 (1), 3376. https://doi.org/10.1038/s41467-018-05878-y.
    (277) Zhang, D.; Tsounis, C.; Ma, Z.; Djaidiguna, D.; Bedford, N. M.; Thomsen, L.; Lu, X.; Chu, D.; Amal, R.; Han, Z. Highly Selective Metal-Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small 2022, 18 (1), 1–10. https://doi.org/10.1002/smll.202105082.
    (278) Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8 (31), 17–19. https://doi.org/10.1002/aenm.201801909.
    (279) Tomboc, G. M.; Park, Y.; Lee, K.; Jin, K. Directing Transition Metal-Based Oxygen-Functionalization Catalysis. Chem. Sci. 2021, 12 (26), 8967–8995. https://doi.org/10.1039/d1sc01272j.
    (280) Xia, Y.; Zhao, X.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X.; Gao, G.; Hu, Y.; Zhong, J.; Liu, Y.; Wang, H. Highly Active and Selective Oxygen Reduction to H2O2 on Boron-Doped Carbon for High Production Rates. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-24329-9.
    (281) Joshi, K. R.; Rojivadiya, A. J.; Pandya, J. H. Synthesis and Spectroscopic and Antimicrobial Studies of Schiff Base Metal Complexes Derived from 2-Hydroxy-3-Methoxy-5-Nitrobenzaldehyde. Int. J. Inorg. Chem. 2014, 2014, 1–8. https://doi.org/10.1155/2014/817412.
    (282) Ghann, W.; Sobhi, H.; Kang, H.; Chavez-Gil, T.; Nesbitt, F.; Uddin, J. Synthesis and Characterization of Free and Copper (II) Complex of N,N′-Bis (Salicylidene)Ethylenediamine for Application in Dye Sensitized Solar Cells. J. Mater. Sci. Chem. Eng. 2017, 05 (06), 46–66. https://doi.org/10.4236/msce.2017.56005.
    (283) Selwin Joseyphus, R.; Sivasankaran Nair, M. Synthesis, Characterization and Biological Studies of Some Co(II), Ni(II) and Cu(II) Complexes Derived from Indole-3-Carboxaldehyde and Glycylglycine as Schiff Base Ligand. Arab. J. Chem. 2010, 3 (4), 195–204. https://doi.org/10.1016/j.arabjc.2010.05.001.
    (284) Zhang, W.; Bu, S.; Yuan, Q.; Xu, Q.; Hu, M. Controllable Nitrogen-Doping of Nanoporous Carbons Enabled by Coordination Frameworks. J. Mater. Chem. A 2019, 7 (2), 647–656. https://doi.org/10.1039/c8ta09817d.
    (285) Zhou, M.; Li, X.; Zhao, H.; Wang, J.; Zhao, Y.; Ge, F.; Cai, Z. Combined Effect of Nitrogen and Oxygen Heteroatoms and Micropores of Porous Carbon Frameworks from Schiff-Base Networks on Their High Supercapacitance. J. Mater. Chem. A 2018, 6 (4), 1621–1629. https://doi.org/10.1039/c7ta08366a.
    (286) Long, W.-J.; Li, X.-Q.; Xu, P.; Feng, G.-L.; He, C. Facile and Scalable Preparation of Carbon Dots with Schiff Base Structures toward an Efficient Corrosion Inhibitor. Diam. Relat. Mater. 2022, 130 (June), 109401. https://doi.org/10.1016/j.diamond.2022.109401.
    (287) Woo, J.; Lim, J. S.; Kim, J. H.; Joo, S. H. Heteroatom-Doped Carbon-Based Oxygen Reduction Electrocatalysts with Tailored Four-Electron and Two-Electron Selectivity. Chem. Commun. 2021, 57 (60), 7350–7361. https://doi.org/10.1039/d1cc02667d.
    (288) Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y.; Fu, Z.; Lu, Y.; Siahrostami, S.; Baek, J. B. Building and Identifying Highly Active Oxygenated Groups in Carbon Materials for Oxygen Reduction to H2O2. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-15782-z.
    (289) Al-Marghany, A.; Badjah Hadj Ahmed, A. Y.; AlOthman, Z. A.; Sheikh, M.; Ghfar, A. A.; Habila, M. Fabrication of Schiff’s Base-Functionalized Porous Carbon Materials for the Effective Removal of Toxic Metals from Wastewater. Arab. J. Geosci. 2021, 14 (5). https://doi.org/10.1007/s12517-021-06667-6.
    (290) Lou, F.; Buan, M. E. M.; Muthuswamy, N.; Walmsley, J. C.; Ronning, M.; Chen, D. One-Step Electrochemical Synthesis of Tunable Nitrogen-Doped Graphene. J. Mater. Chem. A 2015, 4 (4), 1233–1243. https://doi.org/10.1039/c5ta08038j.
    (291) Wang, Y.; Yi, M.; Wang, K.; Song, S. Enhanced Electrocatalytic Activity for H2O2 Production by the Oxygen Reduction Reaction: Rational Control of the Structure and Composition of Multi-Walled Carbon Nanotubes. Chinese J. Catal. 2019, 40 (4), 523–533. https://doi.org/10.1016/S1872-2067(19)63314-0.
    (292) Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S. Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10 (21). https://doi.org/10.1002/aenm.202000789.
    (293) Wu, K. H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W.; Guo, S. Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. Chem 2020, 6 (6), 1443–1458. https://doi.org/10.1016/j.chempr.2020.04.002.
    (294) Boas, C. R. S. V.; Focassio, B.; Marinho, E.; Larrude, D. G.; Salvadori, M. C.; Leão, C. R.; dos Santos, D. J. Characterization of Nitrogen Doped Grapheme Bilayers Synthesized by Fast, Low Temperature Microwave Plasma-Enhanced Chemical Vapour Deposition. Sci. Rep. 2019, 9 (1), 1–12. https://doi.org/10.1038/s41598-019-49900-9.
    (295) Chakthranont, P.; Nitrathorn, S.; Thongratkaew, S.; Khemthong, P.; Nakajima, H.; Supruangnet, R.; Butburee, T.; Sano, N.; Faungnawakij, K. Rational Design of Metal-Free Doped Carbon Nanohorn Catalysts for Efficient Electrosynthesis of H2O2from O2Reduction. ACS Appl. Energy Mater. 2021, 4 (11), 12436–12447. https://doi.org/10.1021/acsaem.1c02260.
    (296) Sainio, S.; Wester, N.; Aarva, A.; Titus, C. J.; Nordlund, D.; Kauppinen, E. I.; Leppänen, E.; Palomäki, T.; Koehne, J. E.; Pitkänen, O.; Kordas, K.; Kim, M.; Lipsanen, H.; Mozetič, M.; Caro, M. A.; Meyyappan, M.; Koskinen, J.; Laurila, T. Trends in Carbon, Oxygen, and Nitrogen Core in the X-Ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. J. Phys. Chem. C 2021, 125 (1), 973–988. https://doi.org/10.1021/acs.jpcc.0c08597.
    (297) Yang, H. Bin; Miao, J.; Hung, S. F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; Dai, L.; Liu, B. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2 (4), 1–12. https://doi.org/10.1126/sciadv.1501122.
    (298) Aarva, A.; Deringer, V. L.; Sainio, S.; Laurila, T.; Caro, M. A. Understanding X-Ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra. Chem. Mater. 2019, 31 (22), 9243–9255. https://doi.org/10.1021/acs.chemmater.9b02049.
    (299) Wu, Y.; Chen, Z.; Cheong, W. C.; Zhang, C.; Zheng, L.; Yan, W.; Yu, R.; Chen, C.; Li, Y. Nitrogen-Coordinated Cobalt Nanocrystals for Oxidative Dehydrogenation and Hydrogenation of N-Heterocycles. Chem. Sci. 2019, 10 (20), 5345–5352. https://doi.org/10.1039/c9sc00475k.
    (300) Maddi, C.; Bourquard, F.; Barnier, V.; Avila, J.; Asensio, M. C.; Tite, T.; Donnet, C.; Garrelie, F. Nano-Architecture of Nitrogen-Doped Graphene Films Synthesized from a Solid CN Source. Sci. Rep. 2018, 8 (1). https://doi.org/10.1038/s41598-018-21639-9.
    (301) Chen, S.; Luo, T.; Chen, K.; Lin, Y.; Fu, J.; Liu, K.; Cai, C.; Wang, Q.; Li, H.; Li, X.; Hu, J.; Li, H.; Zhu, M.; Liu, M. Chemical Identification of Catalytically Active Sites on Oxygen-Doped Carbon Nanosheet to Decipher the High Activity for Electro-Synthesis Hydrogen Peroxide. Angew. Chemie - Int. Ed. 2021, 60 (30), 16607–16614. https://doi.org/10.1002/anie.202104480.
    (302) Meng, N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Engineering Oxygen-Containing and Amino Groups into Two-Dimensional Atomically-Thin Porous Polymeric Carbon Nitrogen for Enhanced Photocatalytic Hydrogen Production. Energy Environ. Sci. 2018, 11 (3), 566–571. https://doi.org/10.1039/c7ee03592f.
    (303) Guo, C.; Li, Y.; Xu, Y.; Xiang, Q.; Sun, L.; Zhang, W.; Li, W.; Si, Y.; Luo, Z. A Highly Nanoporous Nitrogen-Doped Carbon Microfiber Derived from Bioresource as a New Kind of ORR Electrocatalyst. Nanoscale Res. Lett. 2019, 14 (22), 1–11. https://doi.org/10.1186/s11671-019-2854-9.
    (304) Lim, J. S.; Kim, J. H.; Woo, J.; Baek, D. S.; Ihm, K.; Shin, T. J.; Sa, Y. J.; Joo, S. H. Designing Highly Active Nanoporous Carbon H2O2 Production Electrocatalysts through Active Site Identification. Chem 2021, 7 (11), 3114–3130. https://doi.org/10.1016/j.chempr.2021.08.007.
    (305) Murugesan, C.; Senthilkumar, B.; Barpanda, P. Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium-Air Batteries. ACS Sustain. Chem. Eng. 2022, 10 (28), 9077–9086. https://doi.org/10.1021/acssuschemeng.2c01300.
    (306) Zhang, Y.; Pang, Y.; Xia, D.; Chai, G. Regulable Pyrrolic-N-Doped Carbon Materials as an Efficient Electrocatalyst for Selective O2 Reduction to H2O2. New J. Chem. 2022, 46 (30), 14510–14516. https://doi.org/10.1039/d2nj02393h.
    (307) Wu, Y.; Gao, Z.; Feng, Y.; Cui, Q.; Du, C.; Yu, C.; Liang, L.; Zhao, W.; Feng, J.; Sun, J.; Yang, R.; Sun, J. Harnessing Selective and Durable Electrosynthesis of H2O2 over Dual-Defective Yolk-Shell Carbon Nanosphere toward on-Site Pollutant Degradation. Appl. Catal. B Environ. 2021, 298 (June), 120572. https://doi.org/10.1016/j.apcatb.2021.120572.
    (308) Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon N. Y. 2009, 47 (1), 145–152. https://doi.org/10.1016/j.carbon.2008.09.045.
    (309) Scardamaglia, M.; Susi, T.; Struzzi, C.; Snyders, R.; Di Santo, G.; Petaccia, L.; Bittencourt, C. Spectroscopic Observation of Oxygen Dissociation on Nitrogen-Doped Graphene. Sci. Rep. 2017, 7 (1), 1–11. https://doi.org/10.1038/s41598-017-08651-1.
    (310) Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Advanced Science. John Wiley and Sons Inc August 1, 2021. https://doi.org/10.1002/advs.202100076.
    (311) Zhu, J.; Xiao, X.; Zheng, K.; Li, F.; Ma, G.; Yao, H. C.; Wang, X.; Chen, Y. KOH-Treated Reduced Graphene Oxide: 100% Selectivity for H2O2 Electroproduction. Carbon N. Y. 2019, 153, 6–11. https://doi.org/10.1016/j.carbon.2019.07.009.
    (312) Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y. Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano 2014, 8 (7), 6856–6862. https://doi.org/10.1021/nn501506p.
    (313) Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution in Situ X-Ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115 (34), 17009–17019. https://doi.org/10.1021/jp203741y.
    (314) Guo, Y.; Tang, C.; Cao, C.; Hu, X. N-Doped Carbon-Based Catalysts in Situ Generation Hydrogen Peroxide via 2-Electron Oxygen Reduction Reaction for Degradation of Organic Contaminants in Heterogeneous Electro-Fenton Process: A Mini Review. Surfaces and Interfaces 2023, 38 (April), 102879. https://doi.org/10.1016/j.surfin.2023.102879.
    (315) Wang, H.; Jerigova, M.; Hou, J.; Tarakina, N. V.; Delacroix, S.; López-Salas, N.; Strauss, V. Modulating between 2e− and 4e− Pathways in the Oxygen Reduction Reaction with Laser-Synthesized Iron Oxide-Grafted Nitrogen-Doped Carbon. J. Mater. Chem. A 2022, 10 (45), 24156–24166. https://doi.org/10.1039/d2ta05838c.
    (316) Fan, W.; Duan, Z.; Liu, W.; Mehmood, R.; Qu, J.; Cao, Y.; Guo, X.; Zhong, J.; Zhang, F. Rational Design of Heterogenized Molecular Phthalocyanine Hybrid Single-Atom Electrocatalyst towards Two-Electron Oxygen Reduction. Nat. Commun. 2023, 14 (1), 1–11. https://doi.org/10.1038/s41467-023-37066-y.
    (317) Tan, X.; Tahini, H. A.; Smith, S. C. Understanding the High Activity of Mildly Reduced Graphene Oxide Electrocatalysts in Oxygen Reduction to Hydrogen Peroxide. Mater. Horizons 2019, 6 (7), 1409–1415. https://doi.org/10.1039/c9mh00066f.
    (318) She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science (80-. ). 2017, 355 (6321). https://doi.org/10.1126/science.aad4998.
    (319) Ooka, H.; Huang, J.; Exner, K. S. The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions. Front. Energy Res. 2021, 9 (May), 1–20. https://doi.org/10.3389/fenrg.2021.654460.
    (320) Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A Pentagonal Defect-Rich Metal-Free Carbon Electrocatalyst for Boosting Acidic O 2 Reduction to H 2 O 2 Production. 2023. https://doi.org/10.1021/jacs.3c00689.
    (321) Sgroi, M. F.; Zedde, F.; Barbera, O.; Stassi, A.; Sebastián, D.; Lufrano, F.; Baglio, V.; Aricò, A. S.; Bonde, J. L.; Schuster, M. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production. Energies 2016, 9 (12). https://doi.org/10.3390/en9121008.

    無法下載圖示 全文公開日期 2028/07/13 (校內網路)
    全文公開日期 2033/07/13 (校外網路)
    全文公開日期 2033/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE