簡易檢索 / 詳目顯示

研究生: 洪祝寶
Jhu-Bao Hong
論文名稱: 銲接構造用鑄鋼 SCW 450 低溫衝擊韌性之研究
A Study of Low Temperature Impact Toughness of Steel Castings for Welded Structure SCW 450
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭偉鈞
Wei-Chun Cheng
林本源
Ben-Yuag Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 鑄鋼低溫韌性波來鐵介在物
外文關鍵詞: Cast steel, Low temperature toughness, Pearlite, Inclusion
相關次數: 點閱:220下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  銲接構造用鑄鋼SCW 450是澆鑄量相當大的鑄造用材質,因為經常需要以銲接方式與相關構件接合,因此其機械性質要求與SC 450相同外,額外要求其具低溫衝擊韌性,即0 ℃的沙丕衝擊值最小為27 J。
  本研究旨在探討完全退火與正常化熱處理製程對於銲接構造用鑄鋼SCW 450低溫衝擊韌性的影響,並尋找最佳的熱處理條件。研究方法包括爐冷及空冷的熱處理,以OM及SEM觀察鑄鋼的顯微組織,0 ℃的沙丕衝擊試驗及破斷面型態觀察,並以ProCAST軟體模擬鑄鋼凝固過程,分析二次枝晶間距與局部凝固時間的關係。研究結果顯示熱處理後的波來鐵分佈型態、肥粒鐵晶粒尺寸及介在物顆粒皆是影響鑄鋼低溫韌性的重要因素。


  Steel castings for welded structure SCW 450 enjoy a large tonnage in foundry production and it is usually welded into other parts to fabricate a complete construction. The quality requirements essentially same as that of SC 450 but with an extra toughness in low temperature, that is the Charpy impact value at 0 ℃must greater than 27 J.
  The study has aimed to investigate the effect of full annealing and normalizing heat treating on the low temperature toughness of steel castings for welded structure SCW 450, and to find the optimal parameters of heat treating. The research methods included heat treating in furnace cooling and air cooling, OM and SEM observation on microstructure, low temperature Charpy impact testing and characterization of fracture morphology, the ProCAST package software was used to simulate solidification of casting to analyze the relationship between secondary dendrite arm spacing and local solidification time. The results show that after heat treating the presence of pearlite distribution, ferrite grain size and inclusion will all affect the low temperature toughness of this casting steel.

摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章 前言 1 第二章 原理及文獻探討 3 2.1 鑄鋼的凝固 3 2.2 鑄鋼的熱處理 5 2.3 沃斯田鐵化溫度與持溫時間的影響 7 2.4 鑄鋼中之波來鐵 8 2.5 介在物 9 2.6破壞模式與衝擊溫度 10 第三章 實驗方法 26 3.1 實驗流程與材料備製 26 3.2 熱處理 26 3.3 機械性質試驗 27 3.4 顯微組織分析 29 第四章 結果與討論 39 4.1 鑄態的顯微結構及機械性質 39 4.1.1 凝固枝晶間距與時間 40 4.2 完全退火及正常化的顯微組織 41 4.2.1 波來鐵分布型態 41 4.2.2 晶粒尺寸的變化 42 4.2.3 顯微組成含量的變化 43 4.3 機械性質比較 44 4.3.1 完全退火及正常化熱處理的機械性質 44 4.3.2 交互循環熱處理的機械性質 47 4.3.3 鑄鋼與軋鋼的機械性質 48 第五章 結論 80 未來建議 82 參考文獻 83 附錄A Collections of Micrographies 87 附錄B Data of AISI-1020 90 作者簡介 91

[1] 馮春源,「鋼結構用鋼材與銲材」,鋼結構會刊,中華民國鋼結構協會,第三十五期,台北,(2009)。
[2] CNS 7143,「銲接結構用鑄鋼件」,經濟部標準檢驗局,(1994)。
[3] M. El-bealy and B. G. Thomas, “Prediction of dendrite arm spacing for low alloy steel casting processes,” Metallurgical and Material Transactions B, Vol. 27, pp. 689-693 (1996).
[4] M. A. Taha, “Influence of solidification parameters on dendrite arm spacings in low carbon steels,” Jounal of Materials Science Letters, Vol. 5, pp. 307-310 (1986).
[5] T. F. Bower, H. D. Brody, and M. C. Flemings, “Measurements of solute redistribution in dendritic solidication,” Transaction of the Metallurgical Society of AIME, Vol. 236, pp. 624-633 (1966).
[6] P. M. Unterweiser, H. E. Boyer and J. J. Kubbs, Heat Treater’s Guide, ASM, OH, pp. 1 (1995).
[7] 黃振賢,機械材料,文京圖書有限公司,台北,第182-203頁 (1990)。
[8] P. M. Unterweiser, H. E. Boyer and J. J. Kubbs, Heat Treater’s Guide, ASM, OH, pp. 27-36 (1995).
[9] G. Krauss, Steels: Heat Treatment and Processing Principles, ASM, OH, pp. 107-114 (1990).
[10] O. Topcu and M. Ubeyli, “On the microstructural and mechanical characterizations of low carbon and micro-alloyed steel,” Materials and Design, Vol. 30, pp. 3274-3278 (2009).
[11] S. J. Lee and Y. K. Lee, “Prediction of austenite grain growth during austenitization of low alloy steels,” Materials and Design, Vol. 29, pp. 1840-1844 (2008).
[12] S. Marpoulos, S. Karagiannis and N. Ridley, “The effect of austenitising temperature on prior austenite grain size in a low-alloy steel,” Materials Science and Engineering A, Vol. 483-484, pp. 735-739 (2008).
[13] 林國璋,「低錳鑄鋼之淬火-回火熱處理與金相顯微組織及機械性質關係之研究」,碩士論文,逢甲大學,台中 (2002)。
[14] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, International Thomson Publishing, pp. 190-194 (1991).
[15] A. Seshu Kumar, B. Ravi Kumar, G. L. Datta and V. R. Ranganath, “Effect of microstructure and grain size on fracture toughness of a micro-alloyed steel,” Materials Science and Engineering A, Vol. 527, pp. 954-960 (2010).
[16] Z. Fan, “The grain size dependence of ductile fracture toughness of polycrystalline metals and alloys,” Materials Science and Engineering A, Vol. 191, pp. 73-83 (1995).
[17] S. K. Putaunde, C. Martis and J. Boileau, “Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel,” Materials Science and Engineering A, Vol. 528, pp. 5053-5059 (2011).
[18] W. D. Callister, JR., Materials Science and Engineering an Introduction,4ed., John Wiley and Sons, pp. 289-316 (1996).

[19] B. Garbarz and F. B. Pickering, “Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium,” Materials Science and Technology, Vol. 4, pp. 328-334 (1988).
[20] A. M. Elwazri, P. Wanjara and S. Yue, “The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid stee,” Materials Science and Engineering A, Vol. 404, pp. 91-98 (2005).
[21] K. K. Ray and D. Mondal, “The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels,” Acta Metallurgica et Materialia, Vol. 39, pp. 2201-2208 (1991).
[22] 蔡明欽,鋼顯微組織與性質,五南圖書出版股份有限公司,台北,第245-273頁 (2004)。
[23] W. M. Garrison Jr. and A. L. Wojcieszynski, “A discussion of effect of inclusion volume fraction on the toughness of steel,” Materials Science and Engineering A, Vol. 464, pp. 321-329 (2007).
[24] D. R. Askeland, The science and engineering of materials, Thomson, Toronto, p. 231, p. 475 (2006).
[25] N. Saeidi and A. Ekrami, “Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steel,” Materials Science and Engineering A, Vol. 523, pp. 125-129 (2009).

[26] 機械工程手冊編輯委員會,機械工程手冊5-材料測試與分析,五南圖書出版股份有限公司,台北,第178-183頁 (2002)。
[27] H. Qiu, M. Enoki, Y. Kawaguchi and T. Kishi, “A model for the static fracture toughness of ductile structural steel,” Engineering Fracture Mechanical, Vol. 70, pp. 599-609, (2003).
[28] H. Hajafi, J. Rassizdehghani and S. Norouzi, “Mechanical properties of as-cast microalloyed steels produced via investment casting,” Materials and Design, Vol. 32, pp. 656-663 (2011).
[29] C. C. Menzemer, T. S. Srivatsan, R. Ortiz, Meslet Al-Hajri and M. Petraroli, “Influence of temperature on impact fracture behavior of an alloy steel,” Materials and Design, Vol. 22, pp. 659-667 (2001).
[30] 楊昇翔,「熱處理對低合金鎳鉻鉬鑄鋼低溫衝擊韌性之影響」,碩士論文,國立台灣科技大學,台北 (2010)。
[31] CNS 3033,「金屬材料衝擊試驗試片」,經濟部標準檢驗局,(2000)。
[32] CNS 2112,「金屬材料拉伸試驗試片」,經濟部標準檢驗局,(2005)。
[33] Metals Handbook, Vol. 7, pp. 70-75 (1968).
[34] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, pp. 523-539 (1986).
[35] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley and Sons, pp. 353-418 (1983).

QR CODE