簡易檢索 / 詳目顯示

研究生: 黃政揚
Jheng-Yang Huang
論文名稱: WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究
Effect of WS2 inorganic nanotubes on mechanical properties and microstructure of Mg alloy metal matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 雷添壽
Tien-Shou Lei
周振嘉
Chen-Chia Chou
林柏州
Po-chou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 108
中文關鍵詞: 鎂基複合材料機械性質WS2奈米管重力鑄造T4固溶處理多壁奈米碳管
外文關鍵詞: Magnesium metal matrix composites (Mg MMCs), Mechanical property, WS2 nanotubes, Die-casting, T4 solid solution treatment, Multi-walled carbon nanotubes (MWCNT)
相關次數: 點閱:335下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金添加強化相後形成鎂基複合材料具有許多優異的力學特性,當強化相與基底有良好的結合性時,可提高鎂合金的機械性質。
    本研究主要使用之強化相為WS2奈米管,分別對鎂合金AZ31與AZ61在重力鑄造方式下進行攪拌製程來混合強化,在各鑄件經過T4固溶處理後利用拉伸與硬度測試來比較未添加、添加WS2及多壁奈米碳管之材料機械性質及微觀組織之觀察,並探討其破裂之特徵。


    Based on the pre-assumption that reinforcement combines well with matrix, the excellent mechanical characteristics of magnesium metal matrix composites (Mg MMCs) made by adding reinforcement into magnesium provide more advanced mechanical properties than magnesium. This research aims to produce the magnesium metal matrix composite. Under the process of die-casting with stirring method, WS2 nanotubes is the main reinforcement in order to reinforce AZ31 and AZ61. In order to investigate the mechanical properties, microstructure, and the rupture of features, the casting ingots of MMCs reinforced by WS2 nanotubes, multi-walled carbon nanotubes (MWCNT) and raw material processed by T4 solid solution treatment are compared by measuring tensile properties and hardness.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XV 第一章緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 本實驗室之鎂基複合材料熔煉製程 3 1.2.2 強化相對晶粒組織之影響 4 1.2.3 強化相對機械性質之影響 8 1.2.4 T4固溶處理對合金之影響 13 1.3 文獻整理心得 13 1.4 研究動機與目的 15 第二章鎂合金相關性質 16 2.1 鎂合金的特性 16 2.1.1 鎂合金命名方法 17 2.1.2 添加不同合金元素對鎂合金之影響 18 2.2 鎂基複合材料強化理論 22 2.2.1 晶界強化: 22 2.2.2 熱膨脹係數差異影響: 22 2.2.3 Orowan強化: 22 2.2.4 負荷影響(Load bearing) 23 2.2.5 析出強化: 24 2.2.6 散佈強化: 24 2.2.7 鎂合金熱處理: 24 2.3 鎂合金鑄造 25 2.3.1 重力鑄造法: 26 2.3.2 壓鑄法: 26 2.3.3 真空鑄造法: 26 第三章實驗方法與步驟 27 3.1 實驗方式 27 3.2 實驗流程圖 28 3.3 實驗材料 29 3.4 實驗設備 33 3.4.1 熔煉爐 33 3.4.2 動態拉伸試驗機(Material Test system, MTS) 36 3.4.3 濕式自動研磨/拋光機 37 3.4.4 微型維克氏硬度機(Micro-Vickers hardness tester) 38 3.4.5 光學顯微鏡(Optical Microscopy, OM) 39 3.4.6 高溫熱處理爐 40 3.4.7 X-ray影像分析儀 41 3.4.8 X光繞射分析儀 (X-Ray Diffraction Analyzer, XRD) 42 3.5 鎂基複合材料之製備步驟 43 3.6 試片製作與規劃 44 3.7 拉伸試片製作 45 第四章結果與討論 46 4.1 T4固溶處理對鑄件之影響 46 4.2 WS2強化相對微觀組織之影響 49 4.2.1 金相觀察 49 4.2.2 平均之晶粒尺寸分析 54 4.3 WS2強化相對機械性質之影響 56 4.3.1 硬度實驗 56 4.3.2 拉伸試驗 57 4.3.3 拉伸斷面特徵分析 67 4.4 鑄件缺陷的影像及成份分析 69 4.5 強化機制之貢獻度計算 75 第五章結論 80 第六章 未來研究方向 82 參考文獻 83

    [1] 黃建忠, “強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究,” 國立台灣科技大學機械工程學系碩士論文, 2013.
    [2] 吳懿璋, “強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質影響之研究,” 國立台灣科技大學機械工程學系碩士論文, 2014.
    [3] 何佳翰, “AZ31/SiCp鎂基複合材料擠製板材之機械性質與成形性影響之探討,” 國立台灣科技大學機械工程學系碩士論文, 2014.
    [4] M. H. Korayem, R. Mahmudi, W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles,” Materials Science and Engineering A, 519, 198-203, 2009.
    [5] S. Sua´rez, E. Ramos-Moore, B. Lechthaler, F. Muぴcklich, “Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites,” Carbon, 70, 173 -178, 2014.
    [6] H. Z. Ye, X. Y. Liu, “Review of recent studies inmagnesium matrix composites,” Journal of Materials Science, 39, 6153-6171, 2004.
    [7] K. K. Deng, X. J. Wang, Y. W. Wu, X. S. Hu, K. Wu, W. M. Gan, “Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite,” Materials Science and Engineering A, 543, 158-163, 2012.
    [8] C. S. Goh, J. Wei, L. C. Lee, M. Gupta, “Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes,” Materials Science and Engineering A, 423, 153-156, 2006.
    [9] I. K. Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, ”On the mechanical behavior of WS2 nanotubes under axial tension and compression,” Proceedings of the National Academy of Sciences, 103, 523-528, 2005.
    [10] A. M. Díez-Pascual, M. Naffakh, “Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature,” Materials Chemistry and Physics, 141, 979-989, 2013.
    [11] A. Vassiliou, D. Bikiaris, E. Pavlidou, “Optimizing Melt-Processing Conditions for the Preparation of iPP/Fumed Silica Nanocomposites: Morphology, Mechanical and Gas Permeability Properties,” Macromol. React. Eng, 1, 488-501, 2007.
    [12] M. A. Lo´pez-Manchado, L. Valentini, J. Biagiotti, J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing,” Carbon, 43, 1499-1505, 2005.
    [13] S. P. Bao, S. C. Tjong, “Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature,” Materials Science and Engineering A, 485, 508-516, 2008.
    [14] M. F. Omar, H. M. Akil, Z. A. Ahmad, “Mechanical Properties of Nanosilica/Polypropylene Composites Under Dynamic Compression Loading ,” Polym Composite, 32, 565-575, 2011.
    [15] M. Moniruzzaman, K. I. Winey, “Polymer Nanocomposites Containing Carbon Nanotubes,” Macromolecules, 39, 5194-5205, 2006.
    [16] K. Deng, C. Wang, J. Shi, Y. Wu, K. Wu, “Microstructure evolution mechanism of micron particle reinforced magnesium matrix composite at room temperature,” Materials Chemistry and Physics, 134, 581-584, 2012.
    [17] 黃友聖, “AZ61/SiCp鎂基複合材料擠型製程及其擠型管之機械性質研究,” 國立中正大學工學院機械工程學系碩士論文, 2011.
    [18] 黃柏升, “等徑轉角反覆擠製模具之開發與實驗,” 國立交通大學機械工程學系碩士論文, 2009.
    [19] 洪大凡, “AZ61 鎂合金管材之熱擠成形性探討,”國立台灣科技大學機械工程學系碩士論文, 2006.
    [20] J. L. Murray, L. H. Bennett and H. Kacprzak, ”Binary Alloy Phase Diagrams,” American Society for Metals, Metals Park, Ohio, 1986.
    [21] ASM, “Magnesium Alloys,” Metals Handbook, 69th, 425-434, 1985.
    [22] 賴耿陽, “非鐵金屬材料,” 復漢出版社, 1998.
    [23] 賴耿陽, “工業材料之應用,” 復漢出版社, 1990.
    [24] C. R. Brooks, Heat Treatment, “Structure and Properties of Nonferrous Alloys,” ASM International, Metals Park, OH, 1984.
    [25] C. Shaw, H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys,” Materials Science and Engineering A, 226-228, 856-860, 1997.
    [26] R. S. Busk, “Lattice Parameters of Magnesium Alloys,” Journal of Metals, Transactions Aime, 188, 1460-1464, 1950.
    [27] 張永耀, “金屬熔銲學(下冊),”徐氏基金會, 1976.
    [28] 洪一中, “合金元素及滾軋製程對鎂合金微觀組織及機械性質之影響,” 大同大學材料工程學系碩士論文, 2002.
    [29] E. Cerri, M. Cabibbo and E. Evangelista, “Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy,” Materials Science and Engineering A, 333, 208-217, 2002.
    [30] J. F. King, “Development of Magnesium Diecasting Alloys,” Magnesium Alloys and their Applications, Werkstoff Informationsgesellschaft, Hamburger, 37-47, 1998.
    [31] A. L. Olsen, “Corrosion properties of new magnesium alloys,” Metal, 46, 570-574, 1992.
    [32] 劉彥辰, “AM60/Al2O3p鎂基複合材料擠型管之機械性質與微觀組織研究,” 國立中正大學機械工程學系碩士論文, 2012.
    [33] 陸仁凱, “7XXX系含鈧鋁合金的顯微結構與機械性質之分析,” 國立中央大學機械工程學系碩士論文, 2006.
    [34] 丁國華, 趙健祥, 方春樹, 蕭俊德, “新標準課程鑄造學,” 高立圖書有限公司, 五版, 1989.
    [35] 張晉昌, “鑄造學,” 全華圖書股份有限公司, 二版, 2008.
    [36] A. ZAK, L. S. ECKER, R. EFRATI, L. DRANGAI, N. FLEISCHER and R. TENNE, “Large-scale Synthesis of WS2 Multiwall Nanotubes and their Dispersion, an Update,” Sensors & Transducers Journal, 12, 1-10, 2011.
    [37] Y. Uematsu, K. Tokaji, M. Matsumoto, “Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys,” Materials Science and Engineering A, 517, 138-145, 2009.
    [38] 王景輝, “鋁/鈣/錳元素對於鎂合金燃燒性質的影響,” 國立中央大學機械工程學系碩士論文, 2002.
    [39] B. Akyuz, “Influence of Al content on machinability of AZ series Mg alloys,” Trans. Nonferrous Met. Soc. China, 23, 2243-2249, 2013.
    [40] S. F. Hassan, M. Gupta, “Effect of submicron size Al2O3 particulates on microstructural and tensile properties of elemental Mg,” Journal of Alloys and Compounds, 457, 244-250, 2008.
    [41] 莊東漢, “材料破損分析,” 五南圖書出版股份有限公司, 初版, 2010.
    [42] K. Liu, Q. F. Wang, W. B. Du, S. B. Li, Z.H. Wang, “Failure mechanism of as-cast Mg_6Zn_2Er alloy during tensile test at room temperature,” Trans. Nonferrous Met. Soc. China, 2, 3193-3199, 2013.
    [43] 王星豪, 劉品均, 施佑蓉, “材料科學與工程,” 美商麥格羅•希爾國際股份有限公司台灣分公司, 二版, 2005.
    [44] R. L. Fleischert, “Solition hardening,” Acta Materialia, 9, 1961
    [45] H. Yang, L. Huang, M. Zhan, “Hot Forming Characteristics of Magnesium Alloy AZ31 and Three-Dimensional FE Modeling and Simulation of the Hot Splitting Spinning Process,” Magnesium Alloys – Design Processing and Properties, 368-386, 2011.
    [46] Y. Ding, B. Xiao, “Thermal Expansion Tensors, Grüneisen Parameters and Phonon Velocities of Bulk MT2 (M= W and Mo; T=S and Se) from First Principles Calculations,” RSC Adv, 2015.
    [47] C. S. Goh, J. Wei, L. C. Lee, M. Gupta, “Properties and deformation behaviour of Mg–Y2O3 nanocomposites,” Acta Materialia, 55, 5115-5121, 2007.
    [48] Z. Zhang, D. L. Chen, “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites,” Materials Science and Engineering, 483-484, 148-152, 2008.
    [49] X. Zhou, D. Su, C. Wu, and L. Liu, “TensileMechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-ReinforcedMagnesium Alloy Composites,” Journal of Nanomaterials, 851-862, 7, 2012.

    QR CODE