簡易檢索 / 詳目顯示

研究生: 吳其庭
Chi-Ting Wu
論文名稱: 分子動力學模擬五元合金奈米線以不同冷卻速率對機械性質的影響
A Study on Mechanical Behaviors for Various Cooling Rate and Working Temperature of 5-Element Alloys Nanowires with Amorphous Structures by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 郭俊良
Chun-Liang Kuo
丘群
Chun-Chiu
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 194
中文關鍵詞: 分子動力學多元合金剪切帶非晶材料塑變機制
外文關鍵詞: Molecular Dynamics, Multicomponemt Alloy, Shear Band, amorphous material, mechanism of deformation
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用分子動力學(Molecular Dynamics,MD)模擬銀/金/鈀/銅/鎳、銀/金/鐵/銅/鎳、銀/金/鈦/銅/鎳三種五元合金奈米線進行高溫熔煉後,快速冷卻之晶體型態,並針對五元合金奈米線進行拉伸試驗的模擬,探討五元合金奈米線的結晶度對變形機制、強度、延展性之影響。
    模擬結果顯示,三種五元合金奈米線的冷卻速率越慢,結晶度越高。在相同冷卻速率下,如果組成元素的晶體結構不同則其結晶度相對較低,其以不同晶系者結晶度最低。將冷卻後的合金奈米線鬆弛平衡可使其結晶度有限度的提升。原子半徑差越大其結晶度越低。非晶材料主要在於其塑變機制不同於單晶材料是利用差排滑移,而非晶材料則是由自由體積的形成與消失造成其塑變發生原子位移,並形成規則排列的剪切帶造成應力降伏。
    銀/金/鈀/銅/鎳冷卻速率為1×1013K/s的合金奈米線,主要是其產生奈米架橋現象,造成其延展性較佳。銀/金/鈀/銅/鎳為1×1012K/s的合金奈米線具有最高結晶度和降伏強度。


    The study analyzes solidification behavior of silver – gold – palladium – copper – nickel, silver – gold – iron – copper – nickel, silver – gold – titanium – copper – nickel nanowires after melting at high temperature then rapid cooling. Additionally, mechanical properties and deformation behavior of alloy nanowires are also investigated with simple tension test after rapid cooling by using molecular dynamics simulation.
    Results show that three types of nanowires cooled by lower cooling rate will exhibit higher level of crystallization. In the same cooling rate, the different crystal structure and crystal system of component Element has lower the crystallization. After using cooling alloy relaxation balance, it will show higher crystallization. Difference between atomic radii is larger, so the crystallization is lower. In amorphous material, mechanism of deformation is different from single crystal material. The single crystal material use dislocation by slipping. Amorphous material which occur atoms displacement is caused by forming and disappearing of the free volume, and becoming regular arrangement of shear band which lead to stress yielding. Because of Nano Bridge, the silver – gold – palladium – copper – nickel alloy nanowire in the cooling rate 1×1013K/s has the best ductility. the silver – gold – palladium – copper – nickel alloy nanowire in the cooling rate 1×1012K/s has the higest crystallization and yield strength.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 第二章 分子動力學基礎理論 6 2.1 分子動力學之基本假設 6 2.2 分子間作用力與勢能函數 6 2.3 運動方程式及演算法 9 2.4 Verlet表列法 12 2.5 週期性邊界條件 13 2.6 無因次化 15 2.7 原子級應力計算方法 15 2.8 Centrosymmetry參數(CSP) 18 2.9 徑向分佈函數 (Radial Distribution Function,g(r)) 19 2.10 共同鄰近原子 (Common neighbor analysis,CNA) 20 第三章 模擬步驟與模型建立 31 3.1 程式模擬步驟 31 3.1.1初始設定(Initialization) 31 3.1.2 系統平衡(Equilibration) 35 3.1.3 動態模擬(Production) 36 3.2 模型建構 37 第四章 結果與討論 54 4.1 五元合金奈米線製程探討 54 4.1.1 銀/金/鈀/銅/鎳、銀/金/鐵/銅/鎳、銀/金/鈦/銅/鎳之五元合金奈米線的熔煉製程 54 4.1.2 銀/金/鈀/銅/鎳、銀/金/鐵/銅/鎳、銀/金/鈦/銅/鎳之五元合金奈米線的冷卻製程 56 4.2 冷卻速率與鬆弛平衡時間對合金奈米線結晶行為的影響 67 4.2.1 冷卻速率對五元合金奈米線結晶行為之影響 67 4.2.2 冷卻速率對銀/金/鈀/銅/鎳合金奈米線結晶行為之影響 68 4.2.3 冷卻速率對銀/金/鐵/銅/鎳合金奈米線結晶行為之影響 70 4.2.4 冷卻速率對銀/金/鈦/銅/鎳合金奈米線結晶行為之影響 72 4.2.5 平衡鬆弛時間對銀/金/鈀/銅/鎳、銀/金/鐵/銅/鎳、銀/金/鈦/銅/鎳合金奈米線冷卻後的結晶行為之影響 87 4.3 不同試片之拉伸行為 103 4.4 合金奈米線拉伸行為分析 131 4.4.1 冷卻速率為1×1014K/s的銀/金/鈀/銅/鎳非晶合金奈米線在2.2×109s-1應變速率之拉伸行為 134 4.4.2 冷卻速率為1×1014K/s的銀/金/鐵/銅/鎳非晶合金奈米線在2.2×109s-1應變速率之拉伸行為 151 4.4.3 冷卻速率為1×1014K/s的銀/金/鈦/銅/鎳非晶合金奈米線在2.2×109s-1應變速率之拉伸行為 166 4.5綜合討論 181 第五章結論與建議 187 5.1結論…………… 187 5.1未來研究方向與建議 188 參考文獻 189

    1. C.M.Liber, "Nanoscale Science and Technology: Building a BigFuture from Small Things", MRS Bull, Vol.28, pp.486-491(2003).
    2. D.Huo, Y.Liang and K.Cheng, "An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MDsimulation", Journal of Mechanical Engineering Science, Vol. 221, pp.259-266 (2007).
    3. I.N.Mastorakos, H.M.Zbib, D.F.Bahr, J.Parsons, and M.Faisal, "Pseudoelastic behavior of Cu-Ni composite nanowires.", Applied Physics Letters, 94(4), 043104-1(2009).
    4. H.Rafii-Tabar, "Modelling the nano-scale phenomena in condensed matter physicsvia computer-based numerical simulations", Physic Reports,Vol.325, pp.239-310(2000).
    5. Y.Kondo and K.Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science,Vol.289, pp.606-608(2000).
    6. V.Rodrigues, T.Fuhrer and D.Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires", Phys.Rev.Lett. 85, 4124-4127 (2000).
    7. K.Nishimoto, K.Saida and Y.Fujita, "Crystal growth in laser surface melting and cladding of Ni-base single crystal superalloy", Welding in the World, Vol.52, pp.64-78(2008).
    8. 黃振賢,金屬熱處理,新文京開發出版股份有限公司,西元2000年。
    9. S.Jayalakshmi and M. Gupta, " Metallic amorphous alloy reinforcements in light metal matrices ", Publishing: Springer International , pp.59-82(2015).
    10. D.Frenkel and B.Smit, "Understanding Molecular Simulation (Second Edition) ", Academic Press:San Diego, pp.63-107(2002).
    11. J.H.Irving and J.G.Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
    12. N.Metropolis, A.W. Rosenbluth, M.N.Rosenbluth and A.H.Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
    13. L.Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
    14. B.Quentrec and C.Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
    15. X.Zhou, H.Zhou, X.Li, and C.Chen, "Size effects on tensile and compressive strengths in metallic glass nanowires", Journal of the Mechanics and Physics of Solids, 84, 130-144 (2015).
    16. C.D.Wu, "Atomistic simulation of nanoformed metallic glass", Applied Surface Science, 343: 153-159(2015).
    17. M.Sepúlveda-Macías, N.Amigo and G.Gutiérrez, "Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: A molecular dynamics study", Journal of Alloys and Compounds, 655, 357-363(2016).
    18. E.Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
    19. J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
    20. P.M.Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
    21. M.S.Daw and M.I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
    22. M.S.Daw, "Model of Metallic Cohesion: The Embedded-Atom Method", Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
    23. R.A.Johnson, "Analytic Nearest-Neighbor Model for FCC Metals", Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
    24. R.A.Johnson, "Alloy Models with The Embedded-Atom Method", Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
    25. R.A.Johnson and D.J. Oh, "Analytic embedded atom method model for bcc metals",
    26. F.Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, Volume 48, Number 1 July 1993.
    27. Y.Mishin and D.Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations", Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
    28. C.W.Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ, (1971).
    29. J.M.Haile, Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication), John Wiley and Sons, Inc, USA, (1992).
    30. R.Calusius, "On a Mechanical Theory Applicable to Heat", Philosophical Magazine, Vol.40, pp.122-127(1870).
    31. Z.S.Basinski, M.S.Duesbery and R.Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
    32. D.Srolovitz, K.Maeda, V.Vitek and T.Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model", Philosophical Magazine A, Vol.44, pp.847-866(1981).
    33. N.Miyazaki and Y.Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
    34. Y.C.Lin and D.J.Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method", Molecular Simulation, Vol.33, pp. 979-988(2007).
    35. T.Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)" , JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
    36. C.L.Kelchner, S.J.Plimpton and J.C.Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
    37. 彭達仁,"分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析",國立台灣科技大學博士論文,(2008)。
    38. J.D. Honeycutt and H.C. Andemen, " Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters", J Phys.Chem.91 pp.4950-4963(1987).
    39. D.Cheng, W.Wang and S.Huang,"Melting phenomena: effect of composition for 55-atom Ag–Pd bimetallic clusters ", Phys. Chem. Chem. Phys., 10, pp.2513–2518 (2008).
    40. F.Chen, B.C.Curley, G.Rossi and R.L.Johnston, "Structure, Melting, and Thermal Stability of 55 Atom Ag-Au Nanoalloys", J. Phys. Chem. C, 111, pp.9157-9165 (2007).
    41. M.A.Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals", Radiation Effects and Defects in Solids. Chem, pp.239-235 (2001).
    42. F.Cleri and V.Rosato, Tight-binding potentials for transition metals and alloys. Physical Review B, 48(1), 22-33(1993).
    43. M.W.Finnis and J.E.Sinclair, "A simple empiricalN-body potential for transition metals", Philosophical Magazine A, 50(1), 45-55(2006).
    44. R.A.Johnson and D.J.Oh. "Analytic embedded atom method model for bcc metals. Materials Research Society", Vol. 4, No. 5, 1195-1201(1989).
    45. Z.Bangwei and O.Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
    46. R.A.Johnson and D.J.Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM, (1988).
    47. A.Stukowski, "Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul", Mater. Sci. Eng. 18, 015012 (2010).
    48. H. R.Wendt and F.F.Abraham, "Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations", Physical Review Letters, 41(18), 1244-1246(1978).
    49. 陳俊銘,"分子動力學模擬銀/金/鈀合金奈米線以不同冷卻速率及工作溫度對機械性質的影響",國立台灣科技大學碩士論文,(2014)。
    50. 黃再利,"分子動力學模擬奈米銅線結晶型態及機械行為研究",國立台灣科技大學碩士論文,(2009)。
    51. 張鈞詠,"分子動力學模擬不同冷卻速率對金/銀合金奈米線結晶型態及機械行為影響",國立台灣科技大學碩士論文,(2013)。
    52. 柯伊鴻,"分子動力學模擬應變率對不同晶體結構的機械行為之影響",國立台灣科技大學碩士論文,(2011)。
    53. G.Sainath and B.K.Choudhary, "Orientation dependent deformation behaviour of BCC iron nanowires. Computational Materials Science", 111, 406-415 (2016).
    54. 林宇廷,"分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為",國立台灣科技大學碩士論文,(2014)。
    55. A.S.ARGON, "PLASTIC DEFORMATION IN METALLIC GLASSES", Acta Metallurgica, Volume 27, Issue 1, January, pp.47–58 (1979).

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE