簡易檢索 / 詳目顯示

研究生: 林哲寬
Tsekuan Lin
論文名稱: 碳化物添加對火花電漿燒結超高溫二硼化鋯基複合材料於機械與耐溫表現之影響
Effect of carbide additives on mechanical performance and thermostability of ZrB2-based ultrahigh temperature composites fabricated by spark plasma sintering
指導教授: 何羽健
Yu-Chien Ho
口試委員: 何羽健
陳雨澤
黃中人
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 102
中文關鍵詞: 超高溫陶瓷二硼化鋯複合材料火花電漿燒結機械性質耐溫微結構
外文關鍵詞: Ultrahigh temperature ceramics (UHTCs), Zirconium diboride (ZrB2), Composites, Spark plasma sintering (SPS), Mechanical properties, thermostability, Microstructure
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 耐熱結構材於高溫環境應用之自主開發下,從超高溫陶瓷(Ultrahigh temperature ceramics, UHTCs)中選擇高熔點(>3000 ℃)、低密度、較佳機械與熱性質之二硼化鋯做為本研究熱結構材之基體,且為提升二硼化鋯之燒結性、機械性質與熱穩定性,添加碳化物如碳化矽與碳化鋯並透過火花電漿燒結(Spark plasma sintering, SPS)技術成型,製備高燒結性之二硼化鋯基陶瓷複合材料,在機械和耐熱試驗下彰顯碳化物添加相強化之效益與實務應用。火花電漿燒結之電漿加熱階段,其產生局部高溫可以使粉末之原生氧化層蒸發,碳化矽添加輔以燒結過程之氧化還原效果以得高致密度之塊材;更在提升緻密度下,碳化鋯的添加通過其自身高硬度與固溶強化之效果,增強維氏硬度、抗彎強度等機械性質之表現。其中因燒結冷卻後碳化物之熱殘留應力使裂紋在材料內部傳播時出現裂紋偏移、裂紋分支與裂紋架橋等現象促使材料增強韌性,提升材料抗撕裂之能力。另一方面,添加碳化矽不只能提升整體之熱傳導係數,在2000 ℃氧乙炔火炬衝擊60秒之熱衝擊實驗下,其氧化還原效果能提升材料抵禦熱沖刷與抗氧化之能力。除此之外,在火花電漿燒結之石墨模具與銅柱電極間置入碳纖維強化碳基複合材料,其低熱傳導係數減少熱源從銅柱電極流失,提升模具整體系統之保溫性並同時降低SPS燒結過程設備所須輸出之功率,有效降低能源損耗。


    From the independent development of heat-resistant structural materials for high-temperature environment applications, zirconium diboride (ZrB2) with high melting point (>3000 ℃), low density, better mechanical performance and thermostability was employed from ultrahigh temperature ceramics (UHTCs) in this present study. In order to enhance the sinterability, mechanical responses and thermal stability of ZrB2, carbides such as silicon carbide (SiC) and zirconium carbide (ZrC) were added as well as fabricated ZrB2-based ceramic composites with high sinterability through spark plasma sintering (SPS) technology, demonstrating the benefits and practical applications of carbide reinforced additives under mechanical and thermal tests. Initially, in the plasma heating stage during spark plasma sintering, the original oxide layer of the powder was evaporated in the local high temperature generated. The reduction-oxidation reaction of the sintering process was launched with SiC enhanced to obtain a high-density as-SPSed bulk; meanwhile, performance of mechanical properties such as Vickers hardness and flexural strength were improved by adding ZrC through its own high hardness and solid solution strengthening effect. Further, increasing toughness since resisting cracks propagation inside the material by letting cracks deflection, branching, and bridging, due to the thermal residual stresses of the carbide additives after sintering/cooling processes. On the other hand, adding SiC not only the overall thermal conductivity but the ability to withstand thermal erosion and oxidation, under a thermal shock test using a 2000 °C oxyacetylene torch for 60 seconds. In addition, carbon fiber reinforced carbon-based composites (CFRC) were placed between the spark plasma sintering graphite molds and the copper electrodes since its low thermal conductivity for reducing heat loss started from copper electrodes. The thermal insulation in the entire mold system therefore power output of SPS during sintering was conserved. Thus, the energy consumption saved was also performed.

    摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xii 1 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 二硼化鋯(Zirconium diboride, ZrB2)燒結 4 1.2.2 增強相添加之影響 8 1.2.3 火花電漿燒結能源消耗 15 1.3 研究動機與目的 18 1.4 本文架構 19 2 第二章 實驗方法與基礎理論 20 2.1 粉末與混合 20 2.1.1 奈米陶瓷複合材料 20 2.1.2 陶瓷複合材料機械性質強化 21 2.1.3 粉末之混合步驟 22 2.1.4 相組成分析 25 2.1.5 粉末形貌分析 26 2.1.6 B.E.T.比表面積 28 2.1.7 動態雷射粒徑分佈(Particle size distribution, PSD) 29 2.2 火花電漿燒結(Spark plasma sintering, SPS)製程 29 2.2.1 SPS模具配置 31 2.2.2 粉末預壓(Compaction) 34 2.2.3 SPS製程參數 35 2.2.4 緻密度相對密度(Relative density) 37 2.3 機械性質 38 2.3.1 維式硬度儀(Vickers hardness) 38 2.3.2 抗彎強度(Flexural strength) 39 2.3.3 破裂韌性(Fracture toughness) 43 2.4 氧乙炔火炬(Oxyacetylene torch)之熱衝擊試驗 46 3 第三章 結果與討論 52 3.1 粉末分析 52 3.1.1 相組成 52 3.1.2 形貌 55 3.1.3 B.E.T.比表面積 57 3.1.4 粒徑分佈(Particle size distribution, PSD) 59 3.2 添加碳化物對燒結體(As-SPSed)之影響 61 3.2.1 燒結收縮曲線 61 3.2.2 微結構 63 3.3 添加碳化物對機械性質之影響 65 3.3.1 維氏硬度(Vickers hardness) 65 3.3.2 抗彎強度(Flexural strength) 67 3.3.3 破裂韌性(Fracture toughness) 69 3.4 添加碳化物對耐熱(Thermostability)表現之影響 73 3.4.1 尺寸/重量變化與熱傳導係數 73 3.4.2 表面與厚度方向之成份與微觀組織分析 77 3.5 添加碳化物對SPS燒結能源消耗(Energy consumption)之影響 81 4 第四章 結論 89 參考文獻 91

    [1] Nisar, A., Hassan, R., Agarwal, A., and Balani, K. (2022). Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems. Ceramics International, 48(7), 8852-8881.
    [2] Shimada, S., Inagaki, M., and Matsui, K. (1992). Oxidation Kinetics of Hafnium Carbide in the Temperature Range of 480° to 600 °C. Journal of the American Ceramic Society, 75(10), 2671-2678.
    [3] Zapata-Solvas, E., Jayaseelan, D. D., Lin, H. T., Brown, P., and Lee, W. E. (2013). Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. Journal of the European Ceramic Society, 33(7), 1373-1386.
    [4] Yang, B., Li, J., Zhao, B., Hu, Y., Wang, T., Sun, D., Li, R., Yin, S., Feng, Z., Tang, Q., and Sato, T. (2014). Synthesis of hexagonal-prism-like ZrB2 by a sol-gel route. Powder Technology, 256, 522-528.
    [5] Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J., and Shokouhimehr, M. (2018). Effects of carbon additives on the properties of ZrB2-based composites: A review. Ceramics International, 44(7), 7334-7348.
    [6] Groover, M. P. (2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems (4th ed.). John Wiley and Sons.
    [7] 玉利 信, 田中 隆, 田中 孝, 近藤 功, 川原 正, and 鴇田 正 (1995). 炭化ケイ素の緻密化と機械的性質に対する放電プラズマ焼結の効果. 日本セラミックス協会学術論文誌, 103(1199), 740-742.
    [8] Tokita, M., Tamari, N., Takeuchi, T., and Makino, Y. (2009). Consolidation Behavior and Mechanical Properties of SiC with Al2O3 and Yb2O3 Consolidated by SPS. 粉体および粉末冶金, 56(12), 788-795.
    [9] Khoeini, M., Nemati, A., Zakeri, M., and Shahedi Asl, M. (2019). Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite. International Journal of Refractory Metals and Hard Materials, 81, 189-195.
    [10] Brochu, M., Gauntt, B. D., Boyer, L., and Loehman, R. E. (2009). Pressureless reactive sintering of ZrB2 ceramic. Journal of the European Ceramic Society, 29(8), 1493-1499.
    [11] Shahedi Asl, M., Nayebi, B., Motallebzadeh, A., and Shokouhimehr, M. (2019). Nanoindentation and nanostructural characterization of ZrB2-SiC composite doped with graphite nano-flakes. Composites Part B: Engineering, 175, 107153.
    [12] Zou, J., Zhang, G.-J., Zhang, H., Huang, Z.-R., Vleugels, J., and Van der Biest, O. (2013). Improving high temperature properties of hot pressed ZrB2-20vol.% SiC ceramic using high purity powders. Ceramics International, 39(1), 871-876.
    [13] Sciti, D., Guicciardi, S., and Silvestroni, L. (2011). SiC chopped fibers reinforced ZrB2: Effect of the sintering aid. Scripta Materialia, 64(8), 769-772.
    [14] Watts, J., Hilmas, G., and Fahrenholtz, W. G. (2011). Mechanical Characterization of ZrB2-SiC Composites with Varying SiC Particle Sizes. Journal of the American Ceramic Society, 94(12), 4410-4418.
    [15] Zhang, H., Yan, Y., Huang, Z., Liu, X., and Jiang, D. (2009). Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content. Scripta Materialia, 60(7), 559-562.
    [16] Zhang, S. C., Hilmas, G. E., and Fahrenholtz, W. G. (2008). Pressureless Sintering of ZrB2–SiC Ceramics. Journal of the American Ceramic Society, 91(1), 26-32.
    [17] Jyoti, Tiwari, M., Singh, A., and Singh, V. K. (2023). The microstructural and mechanical behavior of in-situ synthesized ZrB2-ZrC and ZrB2-SiC-ZrC composites: A comparative study. Vacuum, 214, 112199.
    [18] Golla, B. R., and Thimmappa, S. K. (2019). Comparative study on microstructure and oxidation behaviour of ZrB2-20vol.% SiC ceramics reinforced with Si3N4/Ta additives. Journal of Alloys and Compounds, 797, 92-100.
    [19] Zhang, J., Chen, H., Xiao, G., Yi, M., Chen, Z., Zhang, J., Shang, X., and Xu, C. (2022). Effects of Si3N4 and WC on the oxidation resistance of ZrB2/SiC ceramic tool materials. Ceramics International, 48(6), 8097-8103.
    [20] Patel, M., Janardhana Reddy, J., and Bhanu Prasad, V. V. (2021). High thermal conductivity aluminium nitride - zirconium diboride (AlN-ZrB2) composite as microwave absorbing material. Ceramics International, 47(15), 21882-21889.
    [21] Nguyen, V.-H., Delbari, S. A., Ahmadi, Z., Shahedi Asl, M., Ghassemi Kakroudi, M., Le, Q. V., Sabahi Namini, A., Mohammadi, M., and Shokouhimehr, M. (2020). Electron microscopy characterization of porous ZrB2-SiC-AlN composites prepared by pressureless sintering. Ceramics International, 46(16, Part A), 25415-25423.
    [22] Zhu, M., Zhang, L., Li, N., Cheng, D., Zhang, J., Yu, S., Bai, H., and Ma, H. (2022). Microstructures and mechanical properties of reactive spark plasma-sintered ZrB2-SiC-MoSi2 composites. Ceramics International, 48(19, Part A), 27401-27408.
    [23] Guo, S.-Q., Kagawa, Y., & Nishimura, T. (2009). Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 29(4), 787-794.
    [24] Grigoriev, O. N., Galanov, B. A., Kotenko, V. A., Ivanov, S. M., Koroteev, A. V., and Brodnikovsky, N. P. (2010). Mechanical properties of ZrB2–SiC(ZrSi2) ceramics. Journal of the European Ceramic Society, 30(11), 2173-2181.
    [25] Guo, S.-Q., Kagawa, Y., Nishimura, T., and Tanaka, H. (2008). Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Materialia, 58(7), 579-582.
    [26] Yang, Y., Qian, Y.-h., Xu, J.-j., and Li, M.-s. (2018). Effects of TaSi2 addition on room temperature mechanical properties of ZrB2-20SiC composites. Ceramics International, 44(14), 16150-16156.
    [27] Xia, C., Shahedi Asl, M., Sabahi Namini, A., Ahmadi, Z., Delbari, S. A., Le, Q. V., Shokouhimehr, M., and Mohammadi, M. (2020). Enhanced fracture toughness of ZrB2-SiCw ceramics with graphene nano-platelets. Ceramics International, 46(16, Part A), 24906-24915.
    [28] Zhang, P., Yang, G., Zhang, L., Yu, R., Ma, J., Yang, B., An, S., and Pang, B. (2022). Effect of the addition of nano carbon black on the interfacial reactions in the short carbon fiber reinforced SiC-BN-ZrC-ZrB2 composites. Carbon Trends, 9, 100203.
    [29] Savari, V., Balak, Z., and Shahedifar, V. (2022). Combined and alone addition effect of nano carbon black and SiC on the densification and fracture toughness of SPS-sintered ZrB2. Diamond and Related Materials, 128, 109244.
    [30] Farahbakhsh, I., Ahmadi, Z., and Shahedi Asl, M. (2017). Densification, microstructure and mechanical properties of hot pressed ZrB2-SiC ceramic doped with nano-sized carbon black. Ceramics International, 43(11), 8411-8417.
    [31] Nguyen, V.-H., Delbari, S. A., Shahedi Asl, M., Le, Q. V., Sabahi Namini, A., Ahmadi, Z., Farvizi, M., Mohammadi, M., and Shokouhimehr, M. (2021). Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics. Ceramics International, 47(9), 12459-12466.
    [32] An, Y., Xu, X., and Gui, K. (2016). Effect of SiC whiskers and graphene nanosheets on the mechanical properties of ZrB2-SiCw-Graphene ceramic composites. Ceramics International, 42(12), 14066-14070.
    [33] Shahedi Asl, M. and Ghassemi Kakroudi, M. (2015). Characterization of hot-pressed graphene reinforced ZrB2-SiC composite. Materials Science and Engineering: A, 625, 385-392.
    [34] Shahedi Asl, M., Azizian-Kalandaragh, Y., Ahmadi, Z., Sabahi Namini, A., and Motallebzadeh, A. (2019). Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers. International Journal of Refractory Metals and Hard Materials, 83, 104989.
    [35] Nisar, A., Khan, M. M., Bajpai, S., and Balani, K. (2019). Processing, microstructure and mechanical properties of HfB2-ZrB2-SiC composites: Effect of B4C and carbon nanotube reinforcements. International Journal of Refractory Metals and Hard Materials, 81, 111-118.
    [36] Nisar, A., Ariharan, S., Venkateswaran, T., Sreenivas, N., and Balani, K. (2017). Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2-20SiC based ultra-high temperature ceramic composites. Carbon, 111, 269-282.
    [37] Wu, W.-W., Estili, M., Zhang, G.-J., and Sakka, Y. (2017). Dispersion and structural evolution of multi-walled carbon nanotubes in ZrB2 matrix. Ceramics International, 43(13), 10533-10539.
    [38] Shahedi Asl, M., Farahbakhsh, I., and Nayebi, B. (2016). Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing. Ceramics International, 42(1, Part B), 1950-1958.
    [39] Yadhukulakrishnan, G. B., Rahman, A., Karumuri, S., Stackpoole, M. M., Kalkan, A. K., Singh, R. P., and Harimkar, S. P. (2012). Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Materials Science and Engineering: A, 552, 125-133.
    [40] Zhu, S., Fahrenholtz, W. G., and Hilmas, G. E. (2007). Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. Journal of the European Ceramic Society, 27(4), 2077-2083.
    [41] Mungiguerra, S., Cecere, A., Savino, R., Saraga, F., Monteverde, F., and Sciti, D. (2021). Improved aero-thermal resistance capabilities of ZrB2-based ceramics in hypersonic environment for increasing SiC content. Corrosion Science, 178, 109067.
    [42] Rezapour, A. and Balak, Z. (2020). Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite. Materials Chemistry and Physics, 241, 122284.
    [43] Adibpur, F., Tayebifard, S. A., Zakeri, M., and Shahedi Asl, M. (2020). Co-reinforcing of ZrB2-SiC ceramics with optimized ZrC to Cf ratio. Ceramics International, 46(14), 22661-22673.
    [44] Kubota, Y., Yano, M., Inoue, R., Kogo, Y., and Goto, K. (2018). Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment. Journal of the European Ceramic Society, 38(4), 1095-1102.
    [45] Guo, S.-Q., Kagawa, Y., Nishimura, T., Chung, D., and Yang, J.-M. (2008). Mechanical and physical behavior of spark plasma sintered ZrC-ZrB2-SiC composites. Journal of the European Ceramic Society, 28(6), 1279-1285.
    [46] Snyder, A., Quach, D., Groza, J. R., Fisher, T., Hodson, S., and Stanciu, L. A. (2011). Spark Plasma Sintering of ZrB2-SiC-ZrC ultra-high temperature ceramics at 1800°C. Materials Science and Engineering: A, 528(18), 6079-6082.
    [47] Laptev, A. M., Bram, M., Vanmeensel, K., Gonzalez-Julian, J., and Guillon, O. (2018). Enhancing efficiency of field assisted sintering by advanced thermal insulation. Journal of Materials Processing Technology, 262, 326-339.
    [48] Huang, L., Qian, M., Lu, H., Sun, Y., Wang, L., and Zou, J. (2017). Reducing electric current and energy consumption of spark plasma sintering via punch configuration design. Ceramics International, 43(18), 17225-17228.
    [49] Niihara, K. (1991). New Design Concept of Structural Ceramics Ceramic Nanocomposites. Journal of the Ceramic Society of Japan, 99(1154), 974-982.
    [50] Smith, C. S. (1948). Introduction to Grains, Phases, and Interfaces—an Interpretation of Microstructure. Trans. AIME, 175, 15-21.
    [51] Cao, M., Wang, S., and Han, W. (2010). Influence of nanosized SiC particle on the fracture toughness of ZrB2-based nanocomposite ceramic. Materials Science and Engineering: A, 527(12), 2925-2928.
    [52] Armstrong, R. W. (1987). The (cleavage) strength of pre-cracked polycrystals. Engineering Fracture Mechanics, 28(5), 529-538.
    [53] Nisar, A., Ariharan, S., and Balani, K. (2017). Establishing microstructure-mechanical property correlation in ZrB2-based ultra-high temperature ceramic composites. Ceramics International, 43(16), 13483-13492.
    [54] Faber, K. T. (2001). Ceramics: Microstructural Toughening (Excluding Transformation Toughening, Whisker Toughening, and Continuous Fiber Toughening). In Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., and Veyssière, P. (Eds.), Encyclopedia of Materials: Science and Technology (pp. 1108-1112). Elsevier.
    [55] Evans, A. G. and Faber, K. T. (1984). Crack-Growth Resistance of Microcracking Brittle Materials. Journal of the American Ceramic Society, 67(4), 255-260.
    [56] Rudy, E. (1969). Ternary Phase Equilibria in Transition-Metal-Boroncarbon-Silicon Systems.
    [57] Balak, Z., Shahedi Asl, M., Azizieh, M., Kafashan, H., and Hayati, R. (2017). Effect of different additives and open porosity on fracture toughness of ZrB2-SiC-based composites prepared by SPS. Ceramics International, 43(2), 2209-2220.
    [58] Akin, I. and Goller, G. (2012). Mechanical and oxidation behavior of spark plasma sintered ZrB2-ZrC-SiC composites. Journal of the Ceramic Society of Japan, 120, 143.
    [59] Liao, H., Zhou, Z., Dai, C., Mao, W., Tao, C., Fan, X., Fan, Z., Chen, B., Xia, D., and Cheng, Y. (2023). SPS densification and ablative performance of ZrB2-SiC-ZrC composites derived from the ternary powders by sol-gel. Ceramics International, 49(11, Part A), 17709-17718.
    [60] Zhang, L., Li, Q., Wang, Z., Wu, C., and Cheng, X. (2015). Fabrication and properties of ZrC-ZrB2-SiC composites by spark plasma sintering. Journal of the Ceramic Society of Japan, 123(1439), 607-610.
    [61] Chakraborty, S., Mallick, A. R., Debnath, D., and Das, P. K. (2015). Densification, mechanical and tribological properties of ZrB2 by SPS: Effect of pulsed current. International Journal of Refractory Metals and Hard Materials, 48, 150-156.
    [62] Monteverde, F., Bellosi, A., and Scatteia, L. (2008). Processing and properties of ultra-high temperature ceramics for space applications. Materials Science and Engineering: A, 485(1), 415-421.
    [63] Enrique, R.-R. (2011). Fracture Toughness Determinations by Means of Indentation Fracture. In John, C. (Ed.), Nanocomposites with Unique Properties and Applications in Medicine and Industry (pp. Ch. 2). IntechOpen.
    [64] Niihara, K., Morena, R., and Hasselman, D. P. H. (1982). Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1(1), 13-16.
    [65] Niihara, K. (1983). A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters, 2(5), 221-223.
    [66] Manière, C., Harnois, C., and Marinel, S. (2023). Role of microstructure reactivity and surface diffusion in explaining flash (ultra-rapid) sintering kinetics. Journal of the European Ceramic Society, 43(5), 2057-2068.
    [67] Mascolo, M. C., Mascolo, G., and Ring, T. A. (2012). Grain boundary evolution on sintering in yttria (8 mol.%)-stabilized zirconia assisted by one or two driving forces. Journal of the European Ceramic Society, 32(16), 4129-4136.
    [68] Guo, S.-Q., Nishimura, T., Kagawa, Y., and Yang, J.-M. (2008). Spark Plasma Sintering of Zirconium Diborides. Journal of the American Ceramic Society, 91(9), 2848-2855.
    [69] Guo, W.-M., Zhang, G.-J., and Wang, P.-L. (2009). Microstructural Evolution and Grain Growth Kinetics in ZrB2-SiC Composites During Heat Treatment. Journal of the American Ceramic Society, 92(11), 2780-2783.
    [70] Lu, Y., Zhang, G.-J., Liu, J.-X., Liu, H.-L., Wang, X.-G., and Xu, F.-F. (2016). Reactive hot-pressing of ZrB2-ZrC-SiC ceramics via direct addition of SiC. Ceramics International, 42(15), 16474-16479.
    [71] Asl, M. S., Kakroudi, M. G., and Noori, S. (2015). Hardness and toughness of hot pressed ZrB2-SiC composites consolidated under relatively low pressure. Journal of Alloys and Compounds, 619, 481-487.
    [72] Tian, Y. and Sun, W. (2022). Synthesis of ZrB2-ZrC hybrid powders via boro-carbothermal reduction of ZrO2 by B4C and carbon black. Ceramics International, 48(18), 26499-26507.
    [73] Monteverde, F. and Bellosi, A. (2005). Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sciences, 7(5), 622-630.
    [74] Wu, W.-W., Zhang, G.-J., Kan, Y.-M., and Wang, P.-L. (2006). Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-Temperature Ceramics at 1800 °C. Journal of the American Ceramic Society, 89(9), 2967-2969.
    [75] Ma, H.-B., Liu, H.-L., Zhao, J., Xu, F.-F., and Zhang, G.-J. (2015). Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C. Journal of the European Ceramic Society, 35(10), 2699-2705.
    [76] Min-Haga, E. and Scott, W. D. (1988). Sintering and mechanical properties of ZrC-ZrO2 composites. Journal of Materials Science, 23(8), 2865-2870.
    [77] Monteverde, F. (2006). Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Applied Physics A, 82(2), 329-337.
    [78] Zou, J., Zhang, G.-J., Hu, C.-F., Nishimura, T., Sakka, Y., Tanaka, H., Vleugels, J., and Van der Biest, O. (2012). High-temperature bending strength, internal friction and stiffness of ZrB2-20vol.% SiC ceramics. Journal of the European Ceramic Society, 32(10), 2519-2527.
    [79] Zhang, G.-J., Deng, Z.-Y., Kondo, N., Yang, J.-F., and Ohji, T. (2000). Reactive Hot Pressing of ZrB2-SiC Composites. Journal of the American Ceramic Society, 83(9), 2330-2332.
    [80] Emami, S. M., Salahi, E., Zakeri, M., and Tayebifard, S. A. (2017). Effect of composition on spark plasma sintering of ZrB2-SiC-ZrC nanocomposite synthesized by MASPSyn. Ceramics International, 43(1, Part A), 111-115.
    [81] Nakamori, F., Ohishi, Y., Muta, H., Kurosaki, K., Fukumoto, K.-i., and Yamanaka, S. (2015). Mechanical and thermal properties of bulk ZrB2. Journal of Nuclear Materials, 467, 612-617.
    [82] Rezaie, A., Fahrenholtz, W. G., and Hilmas, G. E. (2007). Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC. Journal of Materials Science, 42(8), 2735-2744.
    [83] Liu, H.-L., Liu, J.-X., Liu, H.-T., and Zhang, G.-J. (2015). Contour maps of mechanical properties in ternary ZrB2-SiC-ZrC ceramic system. Scripta Materialia, 107, 140-144.
    [84] Yan, Y., Zhang, H., Huang, Z., Liu, J., and Jiang, D. (2008). In Situ Synthesis of Ultrafine ZrB2-SiC Composite Powders and the Pressureless Sintering Behaviors. Journal of the American Ceramic Society, 91(4), 1372-1376.
    [85] Liu, H.-L., Zhang, G.-J., Liu, J.-X., and Wu, H. (2015). Synergetic roles of ZrC and SiC in ternary ZrB2-SiC-ZrC ceramics. Journal of the European Ceramic Society, 35(16), 4389-4397.
    [86] Xiang, M., Gu, J., Ji, W., Xie, J., Wang, W., Xiong, Y., and Fu, Z. (2018). Reactive spark plasma sintering and mechanical properties of ZrB2-SiC-ZrC composites from ZrC-B4C-Si system. Ceramics International, 44(7), 8417-8422.
    [87] Xu, W., Peng, W., Sun, Q., and Shi, L. (2023). Numerical simulation of the transient graphite oxidation process based on a dynamic mesh method. Progress in Nuclear Energy, 159, 104669.
    [88] Zimmermann, J., Hilmas, G., Fahrenholtz, W., Dinwiddie, R., Porter, W., and Wang, H. (2008). Thermophysical Properties of ZrB2 and ZrB2-SiC Ceramics. Journal of the American Ceramic Society, 91, 1405-1411.
    [89] Slack, G. A. (2004). Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. Journal of Applied Physics, 35(12), 3460-3466.
    [90] Mungiguerra, S., Di Martino, G. D., Cecere, A., Savino, R., Zoli, L., Silvestroni, L., and Sciti, D. (2020). Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment. International Journal of Heat and Mass Transfer, 156, 119910.
    [91] Zhou, Z., Tao, C., Liao, H., Mao, W., Fan, X., Zhang, L., Fan, Z., Chen, B., and Cheng, Y. (2023). Pressureless sintering and ablation behavior of PyC-Csf/ZrB2-SiC-ZrC ceramics doped with B4C. Journal of the European Ceramic Society, 43(3), 748-759.
    [92] Zhang, Y., Wang, H., Li, T., Fu, Y., and Ren, J. (2018). Ultra-high temperature ceramic coating for carbon/carbon composites against ablation above 2000 K. Ceramics International, 44(3), 3056-3063.
    [93] Kljajević, L., Matovic, B., Nenadović, S., Bascarevic, Z., Cveticanin, N., and Devecerski, A. (2011). Fabrication of ZrC/SiC, ZrO2/SiC and ZrO2 powders by carbothermal reduction of ZrSiO4. Processing and Application of Ceramics, 5, 103-112.
    [94] He, R., Fang, D., Wang, P., Zhang, X., and Zhang, R. (2014). Electrical properties of ZrB2-SiC ceramics with potential for heating element applications. Ceramics International, 40(7, Part A), 9549-9553.

    無法下載圖示 全文公開日期 2026/01/24 (校內網路)
    全文公開日期 2026/01/24 (校外網路)
    全文公開日期 2026/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE