簡易檢索 / 詳目顯示

研究生: 廖苡婷
YI-TING LIAO
論文名稱: 鋼木合成梁桿件抗彎行為試驗與分析
Experiments and Analyses of the Flexural Behavior of Steel-Timber Composite Beam Members
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 陳沛清
Pei-Ching Chen
蔡孟廷
Meng-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 154
中文關鍵詞: 鋼木合成結構梁桿件抗彎行為有限元素分析耐震梁柱接頭
外文關鍵詞: Steel-Timber Composite Structures, Beam Members, Bending Behavior, Finite Element Analysis, Seismic Beam-to-Column Connection
相關次數: 點閱:186下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,地球暖化與氣候變遷為人類帶來了威脅與挑戰,綠建築的發展便成為現代城市發展的重要趨勢,以可持續性為基礎,注重節能和環境保護來降低能源消耗和汙染排放。木材是唯一符合綠建築的建材,其材料特性可以降低建築物在生產過程中的碳足跡,減少對環境的負面影響。在木結構建築裡,木材具有脆性破壞的特性,在發生劈裂後,導致整體結構性能失效。透過發展鋼木合成結構,由木材則提供低碳環保的優點;鋼材提供構件主要強度及耐震性能,確保整體結構之永續性及穩定性,因此本研究將探討鋼木合成結構於構件的應用,一般於鋼結構的設計中,時常需擴大斷面增加材料的使用,以符合結實性原則並防止挫屈發生,導致構件效能降低且成本增加,使用木材進行包覆之方式,將能有效提升鋼板之面外束制,降低挫屈發生,且木材在厚度達一定程度時具有防火時效的功能,使內部鋼梁避免遇熱軟化,並取代傳統防火披覆材料。本研究針對鋼木合成梁桿件,使用鋼梁元件、圍束木材元件及接合零件做設計,進行一系列試驗研究,透過試驗不同圍束木材尺寸、螺桿與螺絲釘間距差異及接合材料的種類,探討在不同圍束模式及束制方式下,梁桿件的抗彎行為。試驗結果顯示,經過適當的圍束木材元件設計及接合零件的配置,能有效結合鋼材與木材形成合成結構,達到圍束鋼梁的效果,使鋼木合成梁桿件擁有良好的抗彎性能。此外,本研究亦使用有限元素分析建置模型,模擬鋼木合成梁桿件的構件行為,觀察試驗中鋼材與木材應力分布,並探討試驗後的變形情況,最後將本研究設計之鋼木合成梁桿件,初步探討其運用於梁柱接頭的設計,期望此研究能先奠定基礎,未來發展可靠的鋼木合成結構耐震梁柱接頭。


    In recent years, global warming and climate change have brought threats and challenges to human beings. To face these problems, the development of green buildings has become an important trend in the development of modern cities. Based on sustainability, energy conservation and environmental protection, reducing energy consumption and pollution emissions are emphasized in the process. Wood is the only building material that meets the requirements of green buildings, for its material properties can decrease carbon footprints of buildings during production and reduce the negative impact on the environment. In wood structure buildings, wood has the characteristics of being brittle material, which leads to the failure of the overall structural performance after splitting. Through the development of steel-wood composite structures, with wood providing the advantages of low-carbon, environmental protection and steel providing the main strength and seismic performance of components, sustainability and stability of the overall structure can be ensured. Therefore, this study will explore the application of steel-wood composite structures in components. Generally, in the design of steel structures, it is often necessary to expand the cross-section and increase the use of materials to comply with the principle of solidity and to prevent buckling, resulting in reduced component performances and increased costs. Using wood for cladding will effectively avoid out-of-plane rotation of the steel plate, reducing the chance of buckling. When the thickness of the wood reaches a certain level, it has the function of fire resistance, so that the internal steel beams can avoid softening when exposed to heat, which is excellent for replacing traditional fireproof cladding materials. In this study, steel-wood composite beam members were designed using steel beam elements, confined wood elements and joint parts. By testing different confined timber dimensions, differences in spacing between bolts and screws, and types of joint materials in order to discuss the bending behavior of beam members under different confinement modes and methods. The experimental results show that with proper design of the confined timber components and configuration of joint parts, steel and wood can be effectively combined to form a composite material, giving steel-wood composite beams an outstanding bending performance. In addition, to simulate the behavior of steel-wood composite beam members, this study also uses finite element modeling to help observe the stress distribution of steel and wood during the test, and discuss the deformation after the test. Finally, the designs of steel-wood composite beam members in this study are used to preliminarily discuss the seismic behavior design of beam-to-column connection. It is hoped that this research will be the foundation for the development of steel-wood composite structure seismic beam-to-column connection in the future.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 x 照片目錄 xiv 第一章 1 1.1 前言 1 1.2 研究動機與目的 1 永續建材 1 木構材的革新 1 鋼木合成結構 2 結構核心元素 2 1.3 論文內容與架構 3 第二章 文獻回顧 4 2.1 鋼木混合結構建築相關案例 4 2.2 鋼木合成梁桿件之撓曲行為 5 2.3 國內木構造設計之相關規範 7 2.3.1 集成材材料強度 7 2.3.2 集成材防火能力 8 2.3.3 集成材接合零件之規定 8 第三章 鋼木合成梁桿件抗彎試驗研究 10 3.1 鋼木合成梁桿件構造與潛在優勢 10 3.2 鋼木合成梁桿件試驗規劃 10 3.2.1 鋼木合成梁桿件設計與製作 10 3.2.2 鋼木合成梁桿件試驗配置與量測 13 3.2.3 鋼板材料試驗 16 3.3 鋼木合成梁桿件試驗觀察與結果 16 3.3.1 各試體破壞模式彙整 16 3.3.2 試體FS150NC 17 3.3.3 試體FS300NC 17 3.3.4 試體ISRNC 18 3.3.5 試體FS150C 19 3.3.6 試體FS300C 20 3.3.7 試體ISRC 21 第四章 鋼木合成梁桿件試驗結果討論 23 4.1 試體撓曲行為結果歸納 23 4.2 試體彎矩強度估算 24 降伏彎矩強度估算 24 極限彎矩強度估算 25 殘餘彎矩強度估算 26 4.3 試體等效剛度估算 27 4.4 圍束木材形式差異比較 28 4.4.1 木材圍束模式之效應 28 4.4.2 束制形式之效應 29 4.5 圍束木材對鋼梁寬厚比限制之影響 29 4.6 圍束木材對試體抗彎能力之影響 30 第五章 鋼木合成梁桿件有限元素模擬與分析 32 5.1 有限元素模型建置 32 5.2 模擬結果與討論 34 5.3 鋼木合成結構耐震梁柱接頭之可行方案初探 35 第六章 結論與建議 37 6.1 結論 37 6.2 建議 38 參考文獻 39

    [1] Koshihara Mikio, Isoda Hiroshi, Yusa Shuitsu, (2009) “The Design and Installation of A Five-Story New Timber Building in Japan” ,The international symposium on timber structure.
    [2] 原田公明, 水谷美和, 重松瑞樹, 杜 凌子, (2022) “木鋼ハイブリッド構造の実用化におけるフィジビリティスタディ” , 日本建築学会技術報告集 第28巻 第68号 203-208
    [3] Xiaodun Wang, Pengfei Su, Jiadi Liu, Zhihua Chen, Kashan Khan, (2022) “Seismic performance of light steel-natural timber composite beam-column joint in low-rise buildings” ,Journal of Structure Engineering.
    [4] 許秭菱, (2017) “實驗研究探討接合形式對鋼–木組合樑結構行為之影響” , 國立台北科技大學建築與都市設計研究所碩士論文。
    [5] Meng-Ting Tsai, Truong Di Ha Le, (2018) “Determination of Initial Stiffness of Timber–Steel Composite (TSC) Beams Based on Experiment and Simulation Modeling” , Sustainability 2018, 10, 1220.
    [6] Shaowei Duan, Wenzhao Zhou, Xinglong Liu, Jian Yuan, amd Zhifeng Wang, (2021) “Experimental Study on the Bending Behavior of Steel-Wood Composite Beams” , Hindawi Advances in Civil Engineering Volume 2021, Article ID 1315849, 12 pages
    [7] 內政部營建署, (2021) “木構造建築物設計及施工技術規範”。
    [8] 經濟部標準檢驗局, (2014) “CNS 11031結構用集成材”。
    [9] ANSI/AISC 341-16, (2016), “Seismic Provisions for Structural Steel Buildings” ,American Institute of Steel Construction, Chicago, IL.
    [10] ANSI/AISC 360-16, (2016), “Specification for Structural Steel Buildings” ,American Institute of Steel Construction, Chicago, IL.
    [11] Sheng-Jin Chen, C. H. Yeh, J. M. Chu, (1996) “Ductile Steel Beam-to-Column Connections for Seismic Resistance” ,Journal of Structure Egineering.

    QR CODE