簡易檢索 / 詳目顯示

研究生: 孫婉庭
Wan-Ting Sun
論文名稱: 光硬化樹脂添加Halloysite奈米複合材料應用在快速原型系統之研究
The Research of Photo-resin/Halloysite Nanocomposite Applied to Rapid Prototyping System
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 快速成形系統光硬化樹脂Halloysite矽烷表面處理機械性質熱性質
外文關鍵詞: Rapid prototyping, Photopolymer, Halloysite nanotube, Silane treatment, Mechanical property, Thermal property
相關次數: 點閱:246下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今快速原型技術(Rapid Prototyping, RP)已在製造業得到了廣泛的應用,由於RP系統簡單、省時、成本低的優點,有效縮短開發週期進而提高市場競爭力。然而,RP 成型物件之強度的缺陷成為工業應用上的阻礙。本研究針對快速原型系統所使用的材料物性做改善,利用Halloysite 具有高的比表面積、高剛性、化學穩定性等,添加在光硬化樹脂中,並使用 3-氨基丙基三乙氧基矽烷表面處理來增加與光硬化樹脂的界面結合性。在此研究中,我們探討添加Halloysite 以及矽烷處理之 Halloysite 奈米複合材料的各項性能。矽烷處理之Halloysite 使用 X-ray繞射光譜、熱重量分析儀以及核磁共振光譜儀鑑定。奈米複合材料的機械性質及熱性質測定使用萬能試驗拉伸機、硬度計、熱重量分析儀及熱示差掃描卡計。並以掃描式電子顯微鏡對表面形態、分散性以及對光硬化樹脂的界面接合性做探討。Halloysite 奈米複合材料分析結果顯示:材料之拉伸強度隨著增加 Halloysite 含量增加而逐漸下降,而添加矽烷處理 Halloysite 之奈米複合材料,在 2phr 時性質為最佳;添加 Halloysite 之奈米複合材料硬度有提升,在添加矽烷處理之 Halloysite奈米複合材料上更為明顯;此外,材料拉伸斷裂面可以明顯觀察到矽烷界面的接合以及添加含量增加時分散性不佳的結果。


    Nowadays, RP technology has gained great interest in manufacturing applications due to its advantages such as simplicity, low cost production, short manufacturing cycle time and increasing competitiveness. However, the physical properties of material is main problem for RP and become an obstacle to the application on industrial.
    In this research, we investigate the effect of the addition of HNT in mechanical properties. Halloysite nanotube (HNT) has high specific surface area, chemical stability and other characteristics. The specimens were fabricated using photopolymer as matrix materials and HNT as reinforce materials. The surface adhesion was improved by using silane treatment. We proposed the addition of HNT as reinforcement in polymer matrix composites and improved the properties produced by RP. As the result, compared with neat photopolymer, tensile strength is decreased because the HNT had poor interfacial adhesion. Silane treatment of HNT using 3-Aminopropyl triethoxysilane has succeeded to improved tensile strength of lower phr.

    中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究背景 1.2.1 快速原型技術原理 1.2.2 快速原型系統分類 1.2.3 光硬化樹脂與光硬化反應 1.2.4 奈米複合材料 1.2.5 矽烷表面處理 1.3 研究動機與目的 第二章 實驗方法 2.1 實驗材料 2.2 實驗設備與儀器 2.3 實驗步驟與流程 2.4 樣品製備 2.4.1 Halloysite 表面矽烷處理 2.4.2 Halloysite 奈米複合材料漿料製備 第三章 實驗結果與討論 3.1 矽烷處理材料分析 3.1.1 XRD 3.1.2 TGA 3.1.3 固態 29Si-NMR 結構鑑定 3.2 機械性質 3.2.1 拉伸測試 3.2.2 硬度測試 3.3 熱性質 3.3.1 TGA 熱重損失分析 3.3.2 DSC 熱示差分析 3.4 表面形態分析 第四章 結論 參考文獻

    [1] Rosochowski A. and Matuszak A., “Rapid tooling: the state of the art,” Journal of Materials Processing Technology, Vol. 106, No. 1-3, pp. 191-198, 2000.
    [2] Yan X. and Gu P. “A review of rapid prototyping technologies and systems,” CAD Computer Aided Design, Vol.28, No.4, pp. 307-318, 1996.
    [3] Yan Y., Li S., Zhang R., Lin F., Wu R., Lu Q., Xiong Z. and Wang X., “Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends,” Tsinghua Science and Technology, Vol.14, No. 1, pp. 1-12, 2009.
    [4] Chuk R N. and Thomson V J., “A comparison of rapid prototyping techniques used for wind tunnel model fabrication,” Rapid Prototyping Journal, Vol.4, No.2-4, pp. 185-196, 1998.
    [5] Chiu S H. and Wu D C., “Preparation and physical properties of photopolymer/SiO2 nanocomposite for rapid prototyping system,” Journal of Applied Polymer Science, Vol.107, No. 6, pp. 3529-3534, 2008.
    [6] Khaing M W, Fuh J Y H and Lu L., “Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts,” Journal of Materials Processing Technology, Vol.113, No.1-3, pp. 269-272, 2001.
    [7] 吳典錡,「面成型快速原型系統之光罩校正法與光硬化樹脂奈米複合材料物性之研究」,博士論文,臺北,國立臺灣科技大學,高分子工程系,2008。
    [8] Chiu S H., Wicaksono S T., Chen K T.and Pong S H., “Morphology and properties of a photopolymer/clay nanocomposite prepared by a rapid prototyping system,” Science and Engineering of Composite Materials, Vol.21, No. 2, pp. 205-210, 2014.
    [9] Chiu S H., Pong S H., Wu D C. and Lin C H., “A study of photomask correction method in area-forming rapid prototyping system,” Rapid Prototyping Journal, Vol.14, No. 5, pp. 285-292, 2008.
    [10] 劉瑞祥,「感光性高分子」,台南,復文書局,1998。
    [11] 蔡奇澄,「壓克力聚胺酯系樹脂之光硬化動力學研究」,台灣科技大學,纖維及高分子工程所,1992。
    [12] 周洺偉,「陽離子型紫外光硬化樹脂之研究」,台北科技大學,化學工程研究所,2007。
    [13] Tryson G R. and Shultz A R., “A Calorimetric Study of Acrylate Photopolymerization,” Journal of polymer science. Part A-2, Polymer physics, Vol.17, No. 12, pp. 2059-2075, 1979.
    [14] 陳坤玉,「聚醯亞胺/二氧化矽奈米複合材料之製備與性質研究」,中原大學,化學研究所,2002。
    [15] 黃為國,「層狀矽酸鹽補強聚丙烯晴-丁二烯橡膠與聚丁二烯橡膠奈米複合材料之性質研究」,國立交通大學,材料科學與工程學系,2005。
    [16] Joussein E., Petit S., Churchman J., Theng B., Righi D., and Delvaux B., “Halloysite clay minerals - A review,” Clay Minerals, Vol.40, No. 4, pp. 383-426, 2005.
    [17] Du M., Guo B. and Jia D., “Newly emerging applications of halloysite nanotubes: A review,” Polymer International, Vol.59, No. 5, pp. 574-582, 2010.
    [18] Du M., Guo B. and Jia D., “Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene),” European Polymer Journal, Vol.42, No.6, pp. 1362-1369, 2006.
    [19] Ye Y., Chen H., Wu J. and Ye L., “High impact strength epoxy nanocomposites with natural nanotubes,” Polymer, Vol.48, No.21, pp. 6426-6433, 2007.
    [20] Deng S., Zhang J., Ye L.and Wu J., “Toughening epoxies with halloysite nanotubes,” Polymer, Vol.49, No.23, pp. 5119-5127, 2008.
    [21] Raman V S., Rooj S., Das A., Stöckelhuber K W., Simon F., Nando G B., Heinrich G., “Reinforcement of solution styrene butadiene rubber by silane functionalized halloysite nanotubes,” Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol.50, No.11, pp. 1091-1106, 2013.
    [22] Jiang L., Zhang C., Liu M., Yang Z., Tjiu W W., Liu T., “Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids,” Composites Science and Technology, Vol.91, pp. 98-103, 2014.
    [23] 廖邑崇,以3-氨丙基三乙氧矽烷改質α-氧化鋁及補強環氧樹脂之研究,國立成功大學,資源工程研究所,2007。
    [24] 孫士博,牙科填補有機無機環氧樹脂,台灣大學,材料科學與工程學研究所,2001。
    [25] Peixoto A F., Fernandes A C., Pereira C., Pires J. and Freire C., “Physicochemical characterization of organosilylated halloysite clay nanotubes,” Microporous and Mesoporous Materials, Vol.219, No. 23, pp. 145-154, 2016.
    [26] Haroosh H J., Dong Y., Chaudhary D S., Ingram G D.and Yusa S I., “Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT),” Applied Physics A: Materials Science and Processing, Vol.110, No. 2, pp. 433-442, 2013.
    [27] Lingaraju D., Ramji K., Devi M P. and Lakshmi U R., “Mechanical and tribological studies of polymer hybrid nanocomposites with nano reinforcements,” Bulletin of Materials Science, Vol.34, No. 4, pp. 705-715, 2011.
    [28] 董志偉,具環氧基矽烷包覆奈米粒子之研究,國立中央大學,化學工程研究所,2001。
    [29] Karalekas D. and Antoniou K., “Composite rapid prototyping: Overcoming the drawback of poor mechanical properties,” Journal of Materials Processing Technology, Vol.153-154, No. 1-3, pp. 526-530, 2004.
    [30] Cheng W., Fuh F Y H., Nee A Y C., Wong Y S., Loh H T. and Miyazawa T., “Multi-objective optimization of part-building orientation in stereolithography,” Rapid Prototyping Journal, Vol.1, No. 4, pp. 12-23, 1995.
    [31] Ma W., But W C. and He P., “NURBS-based adaptive slicing for efficient rapid prototyping,” CAD Computer Aided Design, Vol.36, No. 13, pp. 1309-1325, 2004.
    [32] Canellidis V., Giannatsis J. and Dedoussis V., “Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography,” International Journal of Advanced Manufacturing Technology, Vol.45, No. 7-8, pp. 714-730, 2009.
    [33] Qian B., Zhang L., Shi Y. and Liu G., “Support fast generation algorithm based on discrete-marking in stereolithgraphy rapid prototyping,” Rapid Prototyping Journal, Vol.17, No. 6, pp. 451-457, 2011.
    [34] Phatak A M. and Pande S S., “Optimum part orientation in Rapid Prototyping using genetic algorithm,” Journal of Manufacturing Systems, Vol.31, No. 4, pp. 395-402, 2012.
    [35] ASTM D638, “Standard Test Method for Tensile Properties of Plastics,” American Society for Testing and Material, 2002.
    [36] ASTM D2240, “Standard Test Method for Rubber Property Durometer Hardness,” American Society for Testing and Material, 2002.
    [37] 林麗娟,工業材料,86期,1997。
    [38] Deng S., Zhang J. and Ye L., “Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments,” Composites Science and Technology, Vol. 69, No. 14, pp. 2497-2505, 2009.
    [39] Tan D., Yuan P., Annabi-Bergaya, F., Yu H., Liu D., Liu H. and He H., “Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen,” Microporous and Mesoporous Materials, Vol. 179, pp. 89-98, 2013.
    [40] 王重仁,金剛烷基環氧樹脂及矽氧烷改質金剛烷基環氧樹脂複合材料製備及特性研究,國防大學理工學院,化學及材料工程學系化學工程研究所,2014。
    [41] Bauer F., Ernst H., Decker U., Findeisen M., Gläsel H. J., Langguth H., Hartmann E., Mehnert R. and Peuker C., “Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 1: FTIR and multi-nuclear NMR spectroscopy to the characterization of methacryl grafting,” Macromolecular Chemistry and Physics, Vol.201, No. 18, pp. 2654-2659, 2000.

    QR CODE