簡易檢索 / 詳目顯示

研究生: 李佳霖
Chia-Lin Lee
論文名稱: 熱力學公式計算鋁-鈷-鉻-鎳-釩合金系統之高熵合金與其顯微結構、硬度與生物相容性之研究
Phase prediction, microstructure, hardness and biocompatibility of Al-Co-Cr-Ni-Vx high entropy alloys using thermodynamics formula calculations
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 155
中文關鍵詞: 生醫材料高熵合金電弧熔煉機械性質生物相容性
外文關鍵詞: biomedical materials, high-entropy alloys, arc melting, mechanical properties, biocompatibility
相關次數: 點閱:159下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高齡化社會的來臨,人類平均壽命也隨著科技進步、醫療水準的進步而漸漸上升,因此多數長者存在著骨質疏鬆的問題,由於人體在20-30歲時,骨骼密度會處於最緻密的狀態,在此之後對於鈣質之吸收能力會逐步的下降,因此骨質也會緩慢的流失,使骨頭內部結構之空孔緩慢擴大,形成骨質疏鬆之症狀,最終造成骨頭與牙齒退化或損壞,然而人類於工業革命時期,對於鑄造金屬與開發合金材料上皆有突破性的成長,且金屬材料通常具有良好的機械性質、耐腐蝕性與化學穩定性,因此也被廣泛運用在醫療器材中,現今金屬材料也經常作為人工關節、動靜脈廔管(人工血管)、止血夾、手術工具、牙齒填充材料、脊椎矯正器、骨釘骨板與骨螺釘,促進骨細胞的分化以生成骨骼,進一步提升骨骼密度並提高其骨骼強度。
    本研究將透過熱力學基礎公式計算鋁-鈷-鉻-鎳-釩之五元合金組成,添加10、15、20、25、30 at.%之釩元素作為平衡元素,並透過鑄態與熱處理兩種模式,分別製備出合金一至合金五,而後透過X光繞射儀進行結構鑑定、高解析度場發射掃描式電子顯微鏡配合能量散佈光譜儀系統觀察微觀結構及組分分析、穿透式電子顯微鏡分析析出物之結構、精密電子天平量測實際密度、維氏硬度計量測實際硬度以及細胞存活率分析評估生物相容性。


    Due to the advent of an aging society, the average life expectancy of human beings has gradually increased with the advancement of science and technology. Therefore, most of the elderly has the problem of osteoporosis. Since the human is 20-30 years old, the bone density is densest. Therefore, the absorption capacity of calcium will gradually decline and the bone will slowly lose. After that the pores in the internal structure of the bone will slowly expand, resulting in a symptoms of osteoporosis. Eventually, it is possible that the bones and teeth degenerate or damage.
    During the industrial revolution, human beings have made breakthroughs in casting metals and developing alloy category, and metal materials usually have good mechanical properties, corrosion resistance and chemical stability, so they are also widely used in medical equipments. Nowadays, metal materials are often used as artificial joints, arteriovenous tubes (artificial blood vessels), hemostatic clips, surgical tools, dental fillings, spine appliances, bone nail plates and bone screws, promote the differentiation of bone cells to generate bone, further increase bone density and increase its bone strength.
    In this study, the compositions of the Al-Co-Cr-Ni-V quinary alloy were calculated through the basic thermodynamic formula, adding 10, 15, 20, 25, 30 at.% vanadium as the balance element, and through the as-cast and heat treatment, Alloy 1 to Alloy 5 were prepared in two modes, respectively, and then the crystal structure identification were analyzed by X-ray diffraction, while the microstructures and morphologies were investigated by high-resolution field emission scanning electron microscopy and energy dispersive spectrometer system to observe microstructure and composition analysis, transmission electron microscopy to analyze the structure of precipitates, precision electronic balance measure the actual density, the Vickers hardness test was used to measure the actual hardness, and the cell viability assay was used to assess the biocompatibility.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 高熵合金 4 2.1.1 高熵概念發展 4 2.1.2 高熵合金 7 2.1.3 高熵合金四大效應 10 2.1.3.1 高熵效應 (High-Entropy Effect) 10 2.1.3.2 嚴重晶格扭曲效應 (Severe-Lattice-Distortion Effect) 13 2.1.3.3 緩慢擴散效應 (Sluggish Diffusion Effect) 15 2.1.3.4 雞尾酒效應 (Cocktail Effect) 17 2.1.4 評估高熵合金形成之參數 18 2.2 CALPHAD (CALculation of PHAse Diagram)方法 29 2.2.1 CALPHAD在高熵合金上的應用 32 2.2.2 Pandat 軟體 35 2.2.2 高通量計算 (High Throughput Calculation) 38 2.3 生醫金屬 40 2.3.1 生醫金屬材料 43 2.3.2 生醫金屬材料的應用與發展 45 第三章 實驗方法 47 3.1 實驗流程 47 3.2 合金系統之熱力學計算 49 3.3 合金組成 52 3.4 合金製備 55 3.5 合金固溶熱處理 57 3.6 合金試片之金相處理 58 3.7 X-ray繞射分析 59 3.8 掃描式電子顯微鏡 60 3.9 穿透式電子顯微鏡 61 3.10 密度分析 62 3.11 硬度分析 64 3.12 生物相容性評估 65 第四章 實驗結果 67 4.1 合金系統之計算 67 4.1.1 熱力學計算結果─合金篩選 68 4.1.2 熱力學計算結果─組成元素之比例趨勢 70 4.1.3 所得高熵合金之各項參數 73 4.2 合金組成及微結構 74 4.2.1 合金一 (Al5Co35Cr15Ni35V10 ) 之組成及微結構 75 4.2.2 合金二 (Al5Co35Cr10Ni35V15) 之組成及微結構 80 4.2.3 合金三 (Al5Co35Cr5Ni35V20) 之組成及微結構 85 4.2.4 合金四 (Al5Co30Cr5Ni35V25) 之組成及微結構 91 4.2.5 合金五 (Al5Co25Cr5Ni35V30) 之組成及微結構 98 4.3 合金密度分析 106 4.4 合金硬度分析 108 4.5 生物相容性分析 110 第五章 結果討論 112 5.1 As-cast與1100°C熱處理合金之XRD圖譜探討 112 5.2 As-cast與1100°C熱處理合金之微結構及元素成分探討 114 5.3 As-cast與1100°C熱處理合金之硬度探討 117 5.4 As-cast與1100°C熱處理合金之生物相容性探討 118 第六章 結果討論 119 第七章 未來工作 120 參考文獻 121 附件 131 附件一 將1451組合金固定Al元素在5 at.%之180組之合金比例 131 附件二 將180組合金固定Cr元素在15 at.%以下之46組之比例 139 附件三 將46組合金固定V元素在10-35at.%之31組之比例 142

    1. Ministry of the Interior, Bulletin of internal statistics, Ministry of the Interior, Department of Statistics, Taiwan, 2021.
    2. S.L. Chen, S Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer, J. Phase Equilib. 22, 373-378 (2001).
    3. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74-78 (2004).
    4. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol. 188, 193-200 (2004).
    5. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition, Metall. Mat. Trans. A35, 1465-1469 (2004).
    6. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Metall. Mat. Trans. A, 35A, 2533-2536 (2004).
    7. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci., 47, 2257-2279 (2005).
    8. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and M.H. Chuang, Metall. Mat. Trans. A, 37A, 1363-1369 (2006).
    9. Yeh, J. W, Ann. Chim. Sci. Mat, 31(6), 633-648.(2006).
    10. Yeh, J. W., Chen, Y. L., Lin, S. J., & Chen, S. K, High-entropy alloys–a new era of exploitation. in Materials Science Forum. Trans Tech Publ (2007).
    11. Hsu, C. Y., Sheu, T. S., Yeh, J. W., & Chen, S. K., Effect of iron content on wear behavior of AlCoCrFexMo0. 5Ni high-entropy alloys. Wear, 268(5-6): 653-659 (2010).
    12. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 48(1), 279-306 (2000).
    13. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A, 36A , 1263-1271 (2005).
    14. Y.S. Huang, L. Chen, H.W. Lui, M.H.Cai, J.W. Yeh, Mater. Sci. Eng. A, 457, 77-83 (2007).
    15. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Corros. Sci. 50, 2053-2060 (2008).
    16. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci., 61, 1-93 (2014).
    17. Long, M.; Rack, H, Biomaterials, 19, 1621–1639 (1998).
    18. Song, Y.; Xu, D.; Yang, R.; Li, D.; Wu, W.; Guo, Z. Mater. Sci. Eng. A, 260, 269-274 (1999).
    19. Braic, V.; Balaceanu, M.; Braic, M.; Vladescu, A.; Panseri, S.; Russo, A, J. Mech. Behav. Biomed. Mater., 10, 197–205 (2012).
    20. J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52-61 (2017).
    21. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, 16, 494-525 (2014).
    22. Cantor, B.,Entropy, 16(9), 4749-4768 (2014).
    23. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349-362 (2016).
    24. B. Cantor, Ann. chim. (Paris, 1914) 32, 245-256 (2007).
    25. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, 375: 213-218 (2004).
    26. C.C. Tunga, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Materials Letters. 61: 1–5. (2007).
    27. B. Cantor, K.B. Kim, P.J. Warren, Mater. Sci. Forum, 386–388 (2002), p. 27
    28. F.R. De. Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, in: Cohesion in Metals, North Holland, 1988, p. 82.
    29. Smith, Cyril Stanley. "Four outstanding researches in metallurgical history." (1963).葉延益,“銲後熱處理對Fe-Co-Ni-Cr-Cu-Alx-C0.1高熵合金銲件性能影響之研究”, 國立交通大學工學院精密與自動化工程研究所碩士論文, 2005.
    30. Inoue, A. and T.J.J.o.n.-c.s. Zhang, Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems. 250: 552-559. (1999).
    31. Chen, T.-K., et al., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. 188: 193-200.(2004).
    32. K.B. Kim, B. Cantor, P.J. Warren, J. Metastable Nanocryst. Mater. 13, 27-32 (2002).
    33. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299-303 (2004).
    34. J.W. Yeh, JOM 65, 1759-1771 (2013).
    35. K.Y. Tsai, M.H. Tsai, J.W. Yeh., Acta Mater., 61, 4887-4897. (2013).
    36. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107-123 (2014).
    37. T.M. Butler, J.P. Alfano, R.L. Martens, M.L. JOM, 16, 246-259. (2015).
    38. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, J.W. Yeh, J. Alloys Compd., 674, 445-462.(2016).
    39. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448-511 (2017).
    40. G.L. Chen, C.T. Liu, Int. Mater. Rev. 46, 253-270 (2001).
    41. W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2-22 (2018).
    42. F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61, 2628-2638 (2013).
    43. Ng, C., et al., Entropy-driven phase stability and slow diffusion kinetics in an Al0. 5CoCrCuFeNi high entropy alloy. Intermetallics, 31: p. 165-172. (2012).
    44. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(4): p. 881-893.(2005).
    45. del Grosso, M.F., G. Bozzolo, and H.O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements. Journal of Alloys and Compounds, 2012. 534: p. 25-31.
    46. Lucas, M., et al., Absence of long-range chemical ordering in equimolar FeCoCrNi. Applied Physics Letters, 2012. 100(25): p. 251907.
    47. Zhang, K. and Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 2012. 22: p. 24-32.
    48. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534-538 (2008).
    49. B. E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E. J. Lavernia, JOM 69, 2024-2031 (2017).
    50. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103, 41-46 (2007).
    51. M.H. Tsai, Entropy 15, 5338-5345 (2013).
    52. W.B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys. (Pergamon Press, New York, 1967).
    53. K. Lonsdale, N.F.M. Henry, International Tables for X-ray Crystallography. (The Kynoch Press, Birmingham, UK, 1968), 45-58.
    54. P.H. Dederichs, Phys. Rev. B 4, 1041 (1971).
    55. B.D. Cullity: Elements of X-Ray Diffraction. 2nd ed. (Addison-Wesley, Reading, MA, 1978), 32-58.
    56. J.L.C. Daams, P. Villars, J.H.N. van Vucht: Atlas of Crystal Structure Types for Intermetallic Phases. (ASM International, Metals Park, OH, 1991).
    57. C. Kittel: Introduction to Solid State Physics. 7th ed. (Wiley, New York, 1996), 3-26.
    58. K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, Annales de chimie 31, 723-736 (2006).
    59. B.S. Murty, J.W. Yeh, S. Ranganathan, P. P. Bhattacharjee, High-Entropy Alloys Elsevier, (2019).
    60. R.E. Smallman and H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed. (Elsiever Ltd., 2007).
    61. D.J. Fisher, High-Entropy Alloys - Microstructures Properties (Trans Tech Publications Ltd, 2015).
    62. S. Guo, C.T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433-446 (2011).
    63. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011).
    64. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233-238 (2012).
    65. A. Takeuchi, A. Inoue, Mater. Sci. Eng. A 304-306, 446-451 (2001).
    66. A. Takeuchi and Akihisa Inoue, Mater. Trans. 46, 2817-2829 (2005).
    67. A. R. Miedema, P. F. de Châtel, F. R. de Boer, Physica B+C 100, 1-28 (1980).
    68. S. Guo, Q. Hu, C. Ng, C. T. Liu, Intermetallics 41, 96-103 (2013).
    69. W.H. Wu, C.C. Yang, J.W. Yeh, Ann. Chim. – Science des Materiaux 31, 737-747 (2006).
    70. H. F. Sheng, M. Gong, L. M. Peng, Mater. Sci. Eng.: A 567, 14-20 (2013).
    71. J.H. Zhu, P.K. Liaw, C.T. Liu, Mater. Sci. Eng. A 239, 260-264 (1997).
    72. A. Kroupa, Comput. Mater. Sci. 66, 3-13 (2013).
    73. H. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method. (Cambridge university press, 2007).
    74. Y.A. Chang, Metall. Mater. Trans. A 37, 273-305 (2006).
    75. C. Wang, Ph.D. thesis (Universität Stuttgart, 2006).
    76. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Calphad 26, 175-188 (2002).
    77. M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, Cham: Springer International Publishing, 2016.
    78. J.J. Van Laar, Zeitschrift für physikalische Chemie 63, 216-253 (1908).
    79. R. Raghavan, K.C. Hari Kumar, B.S. Murty, J. Alloys Compd. 544, 152-158 (2012).
    80. C. Zhang, F. Zhang, S.L. Chen, W.S. Cao, JOM 64, 839-845 (2012).
    81. A. Durga, K.C. Hari Kumar, B.S. Murty, Trans. Indian Inst. Met. 65, 375-380 (2012).
    82. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, Calphad 45, 1-10 (2014).
    83. O. N. Senkov, J. D. Miller, D. B. Miracle, C. Woodward, Calphad 50, 32-48 (2015).
    84. S. Gu, F. Pasqualetti, M. Cieslak, Q.K. Telesford, A.B. Yu, A.E. Kahn, J.D. Medaglia, J.M. Vettel, M.B. Miller, S.T. Grafton, D.S. Bassett, Nat. Commun. 6, 8414 (2015).
    85. C.E. Campbell, U.R. Kattner, Z.K. Liu, Integrating Materials and Manufacturing Innovation 3, 158-180 (2014).
    86. H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163, 184-189 (2009).
    87. F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, J. Eng. Mater. Technol. 131, 034501 (2009).
    88. T.T. Shun, Y.C. Du, J. Alloys Compd. 479, 157-160 (2009).
    89. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488, 57-64 (2009).
    90. C.M. Lin, H.L. Tsai, Intermetallics 19, 288-294 (2011).
    91. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, J. Alloys Compd. 509, 1607-1614 (2011).
    92. N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Chod, Mater. Des. 86, 598-602 (2015).
    93. Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, J. Zhao, Trans. Nonferrous Met. Soc. China 25, 1341-1351 (2015).
    94. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, C.T. Liu, Scr. Mater. 131, 42-46 (2017).
    95. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W. A. Oates, Calphad 33, 328-342 (2009).
    96. S.L. Chen, Y.A. Chang, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Prog. Mater. Sci. 313-345 (2004).
    97. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J..D. Poplawsky, P.K. Liaw, Mater. Des. 109, 425-433 (2016).
    98. C. Huang, Y. Zhang, J. Shen, R. Vilar, Surf. Coat. Technol. 206, 1389-1395 (2011).
    99. R.H. Victora, C.F. Brucker, T.K. Hatwar, J.E. Hurst, B. Uryson, D. Karns, J. Appl. Phys. 81, 3833-3837 (1997).
    100. G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature 392, 694-696 (1998).
    101. G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. Lett. 88, 255506 (2002).
    102. G.B. Olson, Science 288, 993-998 (2002).
    103. C. Zhang, M.C. Gao, High-Entropy Alloys (Springer, 2016).
    104. J.L. Spivack, J.N. Cawse, D.W. Whisenhunt Jr, B.F. Johnson, K.V. Shalyaev, J. Male, E.J. Pressman, J.Y. Ofori, G.L. Soloveichik, B.P. Patel, Appl. Catal., A 254, 5-25 (2003).
    105. D. Morgan, G. Ceder, S. Curtarolo, Meas. Sci. Technol. 16, 96 (2004).
    106. H. Koinuma, I. Takeuchi, Nat. Mater. 3, 429-438 (2004).
    107. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299-312 (2010).
    108. S. Wang, Z. Wang, W. Setyawan, N. Mingo, S. Curtarolo, Phys. Rev. X 1, 021012 (2011).
    109. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, Marco Buongiorno-Nardelli, Comput. Mater. Sci. 58, 227-235 (2012).
    110. Curtarolo, S., et al., The high-throughput highway to computational materials design. Nature materials, 2013. 12(3): p. 191-201.
    111. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Appl. Surf. Sci. 476, 242-258 (2019).
    112. R.A. Potyrailo, I. Takeuchi, Meas. Sci. Technol. 16, 1 (2004).
    113. Rajan, K.J.A.R.M.R., Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. 38: p. 299-322. (2008).
    114. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, Hubert Lam, ACS Comb. Sci. 13, 579-633 (2011).
    115. M.L. Green, I. Takeuchi, J.R Hattrick-Simpers, J. Appl. Phys. 113, 9-1 (2013).
    116. Miracle, D.J.M.S. and Technology, Critical assessment 14: High entropy alloys and their development as structural materials. 2015. 31(10): p. 1142-1147.
    117. N.d. council, 高齡化時程, 中華民國人口推估(2020至2070年), 2020.
    118. Anderson, J. M., Rodriguez, A., and Chang, D. T., Semin. Immunol., Vol. 20, No. 2, 86-100 (2008).
    119. Gad, S. C., Mater Charact, 285-306 (2013).
    120. http://www.nacis-cn.com/protest.aspx?id=25.
    121. Ilaria Decimo, Guido Fumagalli, Valeria Berton, Mauro Krampera, Francesco Bifari, National Library of Medicine, 1(2): 92–105 (2012).
    122. J.O.A.Mvan Baal, K.K.Van de Vijver, R.Nieuwland, C.J.F.van Noorden, W.J.van Driel, A.Sturk, G.G.Kenter, L.G.Rikkert, C.A.R.Lok, Tissue Cell, 49, 95-105 ( 2017).
    123. Robert B. Hinton and Katherine E. Yutzey, National Library of Medicine, 73: 29–46 (2014).
    124. Festas, A. J., Ramos, A., & Davim, J. P., Proc. Inst. Mech. Eng. L, 234(1), 218-228 (2020).
    125. Niinomi, M, Nakai, M, Hieda, J., Acta Biomater, 8: 3888–3903(2012).
    126. Gore, D., Frazer, R. Q., Kovarik, R. E., & Yepes, J. F., J Long Term Eff Med Implants, 15(6), (2005).
    127. R.M. Martin, Electronic structure: basic theory and practical methods. (Cambridge university press, 2020).
    128. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Intermetallics 18, 1758-1765, 2010.
    129. ASTM, E., 92-82. Standard Test Method for Vickers Hardness of Metallic Materials. 2001 Annual Book of ASTM, 2003.
    130. A. S. T. M. Standard, Standard Test Method for Vickers Hardness of Metallic Materials. (Annual Book of ASTM Standards, Easton, 1996).
    131. C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 624, 100-107 (2015).
    132. Duhan, R., & Choudhary, S., Int. J. Mech. Eng. Technol., 3(4), 1-8. (2014).
    133. SUI, Y. W., LI, B. S., LIU, A. H., Hai, N. A. N., GUO, J. J., & FU, H. Z., T NONFERR METAL SOC, 18, p.291-296.(2008).
    134. Duhan, R., & Choudhary, S. Int. J. Mech. Eng. Technol., 3(4), 1-8 (2014).

    QR CODE