簡易檢索 / 詳目顯示

研究生: 彭偉益
Wei-Yi Peng
論文名稱: WS2無機奈米材料製作與其對鋁基複合材料強化的應用
WS2 inorganic nanomaterial fabrication and its application on reinforcement of Al alloy metal matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 陳復國
Fuh-Kuo Chen
丘群
Chun Chiu
林柏州
Po-Chou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 鋁基複合材料WS2奈米管WS2類富勒烯顆粒機械性質重力鑄造
外文關鍵詞: Aluminum metal matrix composites, WS2 nanotube, WS2 fullerene-like nanoparticle, Mechanical property, Die-casting.
相關次數: 點閱:239下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以6061鋁合金添加不同重量百分比 (0.1、0.2與0.5wt.%)之奈米管與 (0.1和0.2wt.%) 之類富勒烯奈米顆粒以攪拌鑄造方式進行鋁基複合材料的製備,並探討不同重量百分比的強化相添加對機械性質與微觀組織之影響。
    從實驗結果顯示6061鋁合金添加WS2奈米管在降伏強度、極限強度與延展性在添加至0.2wt.%時具有最佳值,分別提升了15.0%、20.6%以及67.8%。硬度數值方面則在添加至0.5wt.%時具有最佳值,與基材相比提高了5.1% ; 添加WS2類富勒烯顆粒在0.2wt.%時,其降伏強度、極限強度與延展性相較於基材也分別提升了12.3%、15.8%與39.3%。由微觀組織的觀察中可發現,隨著WS2奈米管或類富勒烯顆粒添加量提升晶粒尺寸皆有細化效果,添加至0.5wt.%的WS2奈米管複合材料晶粒尺寸下降至54.4μm,相比於基材平均晶粒尺寸降低了48.4%,且當WS2奈米管添加至0.5wt.%時,經SEM觀察發現奈米管有團聚情形發生,為造成添加至0.5wt.%時複合材料拉伸性質下降的因素。由複合材料強化機制之貢獻值計算比較結果顯示,兩材料熱膨脹係數差異為造成鋁基複合材料機械性質提升的主要因素。


    The main aims of this research is to produce aluminum metal matrix composite. The materials used during experiment was 6061 aluminum alloy with different weight percentage of the WS2 nanotube (0.1, 0.2, 0.5wt.%) and WS2 fullerene-like nanoparticle (0.1, 0.2wt.%) to synthesize the aluminum metal matrix composite. Both aluminum and aluminum metal matrix composite were produced by stirring-casting method. Investigation of mechanical properties and microstructure of aluminum metal matrix reinforced with WS2 nanotube and WS2 fullerene-like nanoparticle have been done.
    From experimental results, aluminum metal matrix composite with 0.2wt.% WS2 nanotube showed the best mechanical properties. Yielding strength, ultimate tensile strength, and ductility were improved by 15.0%, 20.6% and 67.8%, respectively. Adding 0.5wt.% WS2 nanotube showed the best result in hardness test, improved by 5.1%. With 0.2wt.% WS2 fullerene-like nanoparticle, yielding strength, ultimate tensile strength and ductility were enhanced by 12.3%, 15.8% and 39.3%, respectively. From metallography microstructure, it was found that increasing WS2 nanotube or fullerene-like nanoparticle weight percentage in aluminum metal matrix composite, results in grain refinement. By adding 0.5wt.% WS2 nanotube, the grain size of aluminum metal matrix composites was refined to 54.4μm which was reduced by 48.4% compare to the grain size of 6061 aluminum alloy ingot. SEM analysis showed that 0.5wt.% of WS2 nanotube resulted in aggregation of which decreases the tensile strength. The composite materials reinforcement mechanism contribution shows that the differences of thermal expansion coefficients between WS2 nanotube or WS2 fullerene-like nanoparticle and 6061 alloy dominate the mechanical property improvement.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 鋁基複合材料相關研究文獻 3 1.3.2 WS2奈米管機械性質研究 6 1.3.3 WS2奈米材料應用於複合材料強化相相關文獻 7 1.4 文獻整理心得 10 第二章 鋁合金材料相關介紹 12 2.1 鋁合金材料特性 12 2.1.1 鋁合金種類及代號 13 2.1.2 6061鋁合金特性 15 2.1.3 添加不同合金元素對鋁合金的影響 16 2.2 金屬材料強化相機制 17 2.2.1 晶粒細化強化 18 2.2.2 熱膨脹係數差異影響 18 2.2.3 Orowan強化與散佈強化 18 2.2.4 負荷影響 19 2.2.5 析出強化 20 2.3 鋁合金鑄造 20 2.3.1 重力鑄造法 20 2.3.2 壓鑄法 21 2.3.3 真空鑄造法 21 第三章 實驗方法與步驟 22 3.1 實驗方式 22 3.2 實驗流程圖 23 3.3 實驗材料 23 3.4 實驗設備 25 3.4.1 熔煉爐 25 3.4.2 動態拉伸試驗機 (Material Test system, MTS) 28 3.4.3 微型維克氏硬度機 (Micro-Vickers hardness tester) 29 3.4.4 濕式自動研磨/拋光機 30 3.4.5 光學顯微鏡 (Optical Microscopy, OM) 31 3.4.6 高解析度場發射掃描式電子顯微鏡 (High Resolution Field-Emission Scanning Electron Microscope, FESEM) 32 3.4.7 穿隧式電子顯微鏡 (Transmission Electron Microscopy, TEM) 33 3.4.8 X光繞射 (X-ray diffraction, XRD) 34 3.5 6061鋁基複合材料製備步驟 36 3.6 6061鋁合金與複合材料試片製作與規劃 36 第四章 結果與討論 39 4.1 WS2奈米管與類富勒烯對鋁基材料機械性質之影響 39 4.1.1 拉伸試驗: 39 4.1.2 硬度試驗: 42 4.2 6061鋁基複合材料顯微圖像分析 43 4.2.1 顯微圖像分析: 43 4.2.2 EDS與SEM破斷面分析: 47 4.3 平均晶粒尺寸分析 50 4.4 6061鋁基複合材料XRD結構分析 52 4.5 強化機制貢獻度計算 54 第五章 結論 59 第六章 未來展望 61 參考文獻 62

    [1] H. R. Ezatpour, S. A. Sajjadi, M. H. Sabzevar, Y. Huang, “Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting”, Materials and Design, 55, pp.921–928, 2014.
    [2] A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites”, Composites Science and Technology, 70, pp.2237–2241, 2010.
    [3] I. K. Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, “On the mechanical behavior of WS2 nanotubes under axial tension and compression”, Proceedings of the National Academy of Sciences, 103, pp.523-528, 2005.
    [4] A. M. Díez-Pascual, M. Naffakh, “Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature”, Materials Chemistry and Physics, 141, pp.979-989, 2013.
    [5] A. Vassiliou, D. Bikiaris, E. Pavlidou, “Optimizing Melt-Processing Conditions for the Preparation of iPP/Fumed Silica Nanocomposites: Morphology, Mechanical and Gas Permeability Properties”, Macromol. React. Eng, 1, pp.488-501, 2007.
    [6] M. A. Lo´pez-Manchado, L. Valentini, J. Biagiotti, J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing”, Carbon, 43, pp.1499-1505, 2005.
    [7] S. P. Bao, S. C. Tjong, “Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature”, Materials Science and Engineering A, 485, pp.508-516, 2008.
    [8] M. F. Omar, H. M. Akil, Z. A. Ahmad, “Mechanical Properties of Nanosilica/Polypropylene Composites Under Dynamic Compression Loading”, Polym Composite, 32, pp.565-575, 2011.
    [9] S. J. Huang, C. H. Ho, Y. Feldman, R. Tenne, “Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes”, Journal of Alloys and Compounds, Vol 654, pp. 15–22, 2016.
    [10] R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., pp.697-698, 1991.
    [11] 郭俊雄, “6061鋁合金在時效期間加工特性之研析”, 國防大學中正理工學院兵器系統工程研究所碩士學位論文, 2005
    [12] C. M. Friend and S. D. Luxton, “The Effect of δ Al Fiber Arrays on the Age-hardening Characteristics of an Al-Mg-Si Alloy”, J. Mat. Sci., 1988, Vol. 23, pp. 3173-3180.
    [13] Anderson, W. A., Precipitation From Solid Solution, American Society for Metals, Cleveland, Ohio, pp. 150-207, 1957.
    [14] T. Sheppard, “Extrusion of Aluminum Alloy”, pp.78-79, 1999.
    [15] H. W. M. Philips and P. C. Varley, J. Inst. Met, Vol. 69, pp.317, 1943.
    [16] 陸仁凱, “7XXX系含鈧鋁合金的顯微結構與機械性質之分析”, 國立中央大學機械工程學系碩士論文, 2006
    [17] Committee, A. I. H. , “ASM Handbook, Volume 04 –Heat Treating”, ASM International., Vol. 4. pp. 673-675., 1991.
    [18] 張晉昌, “鑄造學,” 全華圖書股份有限公司, 二版, 2008
    [19] 莊東漢,“材料破損分析”, 五南圖書出版股份有限公司, 初版, 2010
    [20] M. Habibnejad-Korayem, R. Mahmudi, W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials Science and Engineering: A, Vol. 519, pp.198–203, 2009.
    [21] 王星豪, 劉品均, 施佑蓉, “材料科學與工程”, 美商麥格羅•希爾國際股份有限公司台灣分公司,二版, 2005
    [22] P. K. Rohatgi, N. Gupta and S. Alaraj, “Thermal Expansion of Aluminum–Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique”, Journal of Composite Materials, vol. 40, pp.1163-1174, 2006.
    [23] Y. Ding, B. Xiao, “Thermal ExpansionTensors, Grüneisen Parameters and Phonon Velocities of Bulk MT2 (M= W and Mo; T=S and Se) from First Principles Calculations”, RSC Adv, 2015.
    [24] N. Ramakrishnan, “An analytical study on strengthening of particulate reinforced metal matrix composites”, Acta mater. vol. 44, No. 1, pp.66-77, 1996.
    [25] Q. Zhang, D.L. Chen, “A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs”, Scripta Materialia, vol. 51, pp.863-867, 2004.
    [26] B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang and H. Zhu, “Thermal conductivity of monolayer MoS2, MoSe2 and WS2: interplay of mass effect, interatomic bonding and anharmonicity”, RSC Adv, vol. 6, pp.5767-5773, 2016.

    QR CODE