簡易檢索 / 詳目顯示

研究生: 蔡啟揚
Chi-Yang Tsai
論文名稱: 二硫化鉬/丁基橡膠奈米複合材料機械性質與阻氣性之研究
Butyl rubber nanocomposites with monolayer MoS2 additives: structural characteristics, enhanced mechanical properties, and gas barrier
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 劉英麟
Ying-Ling Liu
李榮和
Rong-Ho Lee
邱奕釧
Yi-Chuan Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 二硫化鉬奈米複合材料機械性質阻氣性
外文關鍵詞: Molybdenum disulfide, nanocomposites, Mechanical properties, Gas barrier
相關次數: 點閱:392下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是添加二硫化鉬以提升丁基橡膠機械強度及阻氣性。二硫化鉬是二維層狀結構,層與層之間是利用凡德瓦力互相吸引。可以利用超音波震盪機破壞其堆疊的型態,使二硫化鉬分層成單層奈米片厚度約為0.7nm~1.1nm,藉由奈米片與丁基橡膠的交互作用以及二維奈米片可以阻隔橡膠分子鏈之間氣體的通過路徑來達到本實驗的目的。加入乙硫醇/二硫化鉬奈米片之丁基橡膠複合材料拉神強度會比未加入二硫化鉬奈米片之丁基橡膠最大增強到30.7%,而壬硫醇/二硫化鉬奈米片之丁基橡膠複合材料拉神強度會比未加入二硫化鉬奈米片之丁基橡膠最大增強到34.8%。至於阻氣性方面乙硫醇/二硫化鉬奈米片之丁基橡膠複合材料會比未加入二硫化鉬奈米片之丁基橡膠增加53.5%,而壬硫醇/二硫化鉬奈米片之丁基橡膠複合材料會增加49.6%。二硫化鉬奈米片在經過表面改質後確實能提升丁基橡膠之機械強度及阻氣性。


    Emerging two-dimensional (2D) materials such as Molybdenum disulfide (MoS2) offer opportunities to tailor the mechanical properties and gas barrier of polymeric materials. In this study, MoS2 was exfoliated to a monolayer. The thickness of the MoS2 monolayer was 0.7 nm for MoS2-ethanethiol and 1.1 nm for MoS2-nonanethiol. MoS2 monolayers were added to butyl rubber to prepare a MoS2-butyl rubber nanocomposite at concentrations of 0.5, 1, 3, and 5 phr. The tensile stress showed a maximum enhancement of about 30.7% for MoS2-ethanethiol-butyl rubber and 34.8% for MoS2-nonanethiol-butyl rubber compared to pure butyl rubber. In addition, the gas barrier increased by 53.5% in MoS2-ethanethiol-butyl rubber and 49.6% in MoS2-nonanethiol-butyl rubber. MoS2 nanosheets enhanced the mechanical properties and gas barrier of butyl rubber when dispersed in butyl rubber. And the nanocomposites used to manufacture pharmaceutical stoppers with high mechanical properties and gas barrier.

    第一章 前言 1 1.1研究動機與目的 1 第二章 文獻回顧 3 2.1 高分子奈米複合材料 3 2.1.1高分子奈米複合材料介紹 3 2.1.2 黏土複合材料 3 2.1.3 奈米顆粒的分層 4 2.1.4 奈米複合材料的機械性質 5 2.1.5 高分子奈米複合材料的應用 6 2.1.6 阻氣性和膜分離性 7 2.1.7 抗燃性 9 2.1.8 高分子混和相容性 11 2.1.9 生醫的應用 11 2.2 二維材料 14 2.2.1 二維材料的介紹 14 2.2.2 二維材料的結構 15 2.2.3 二維材料的型態 19 2.2.4 二維材料的特性 22 2.2.5 過度金屬二硫化物(TMD)特性 24 2.2 丁基橡膠性質 36 第三章 實驗方法 38 3.1 實驗藥品 38 3.2 實驗儀器 38 3.2.1 紫外-可見光光譜儀(Jasco V-730) 38 3.2.2 傅氏轉換紅外線光譜儀(PerkinElmer Spectrum Two) 38 3.2.3 穿透式電子顯微鏡分析(Philips Tecnai F20 G2 FEI-TEM) 39 3.2.4 掃描式電子顯微鏡分析(JEOL JSM-6500F) 39 3.2.5 拉曼光譜儀(JASCO NRS5100) 39 3.2.6 動態機械分析儀(TA Q800) 39 3.2.8 萬能拉伸試驗機(TS-2000) 39 3.2.7 X光繞射分析儀(BRUKER D8 SSS) 40 3.2.8 原子力顯微鏡(Park NX10) 40 3.2.9 氧氣穿透(ASTM D3985) 40 3.3 實驗過程 41 3.3.1 二硫化鉬表面改質與分層 41 3.3.2 分層後二硫化鉬與丁基橡膠的混鍊和成形 42 3.3.3 實驗流程圖 43 第四章 結果與討論 44 4.1 二硫化鉬表面改質與分層之鑑定 44 4.1.1 分層二硫化鉬之TEM影像分析 44 4.2 二硫化鉬/丁基橡膠性質分析 49 4.2.1 SEM背向散射電子成像分析乙硫醇改質二硫化鉬的分散性 49 4.2.2 拉曼光譜元素分布成像 51 4.2.3 X光繞射分析 53 4.2.4 拉伸試驗 55 4.2.5 DMA分析 57 4.2.5 氧氣穿透率 60 第五章 結論 62 第六章 參考資料 63

    1. Wen, J.Y. and G.L. Wilkes, Organic/inorganic hybrid network materials by the sol-gel approach. Chemistry of Materials, 1996. 8(8): p. 1667-1681.
    2. van Olphen, H., Internal mutual flocculation in clay suspensions. Journal of Colloid Science, 1964. 19(4): p. 313-322.
    3. Paul, D. and L.M. Robeson, Polymer nanotechnology: nanocomposites. Polymer, 2008. 49(15): p. 3187-3204.
    4. Wang, L., et al., Synthesis of a Li− Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2 Nanosheets, and Its Electrochemical Properties. Chemistry of materials, 2003. 15(23): p. 4508-4514.
    5. Fornes, T.D. and D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer, 2003. 44(17): p. 4993-5013.
    6. Lee, K.Y. and D.R. Paul, A model for composites containing three-dimensional ellipsoidal inclusions. Polymer, 2005. 46(21): p. 9064-9080.
    7. Fornes, T., et al., Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 2001. 42(25): p. 09929-09940.
    8. Stretz, H., et al., Intercalation and exfoliation relationships in melt-processed poly (styrene-co-acrylonitrile)/montmorillonite nanocomposites. Polymer, 2005. 46(8): p. 2621-2637.
    9. Takahashi, S., et al., Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer, 2006. 47(9): p. 3083-3093.
    10. Kim, P., et al., Phosphonic acid‐modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials, 2007. 19(7): p. 1001-1005.
    11. Sridhar, V. and D. Tripathy, Barrier properties of chlorobutyl nanoclay composites. Journal of applied polymer science, 2006. 101(6): p. 3630-3637.
    12. Triantafyllidis, K.S., et al., Epoxy− clay fabric film composites with unprecedented oxygen-barrier properties. Chemistry of Materials, 2006. 18(18): p. 4393-4398.
    13. Zimmerman, C.M., A. Singh, and W.J. Koros, Tailoring mixed matrix composite membranes for gas separations. Journal of membrane science, 1997. 137(1-2): p. 145-154.
    14. Matteucci, S., et al., Gas transport in TiO 2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008. 307(2): p. 196-217.
    15. Morgan, A.B., Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polymers for Advanced Technologies, 2006. 17(4): p. 206-217.
    16. Zanetti, M., et al., Fire retardant halogen− antimony− clay synergism in polypropylene layered silicate nanocomposites. Chemistry of Materials, 2002. 14(1): p. 189-193.
    17. Kashiwagi, T., et al., Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer, 2005. 46(2): p. 471-481.
    18. Sinha Ray, S. and M. Bousmina, Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend. Macromolecular Rapid Communications, 2005. 26(20): p. 1639-1646.
    19. Si, M., et al., Compatibilizing bulk polymer blends by using organoclays. Macromolecules, 2006. 39(14): p. 4793-4801.
    20. Damm, C., H. Münstedt, and A. Rösch, The antimicrobial efficacy of polyamide 6/silver-nano-and microcomposites. Materials Chemistry and Physics, 2008. 108(1): p. 61-66.
    21. Lee, Y.H., et al., Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials, 2005. 26(16): p. 3165-3172.
    22. Zhang, Q., et al., A Novel Route to the Preparation of Poly (N‐isopropylacrylamide) Microgels by Using Inorganic Clay as a Cross‐Linker. Macromolecular rapid communications, 2007. 28(1): p. 116-120.
    23. Haraguchi, K. and H.-J. Li, Mechanical properties and structure of Polymer− Clay nanocomposite gels with high clay content. Macromolecules, 2006. 39(5): p. 1898-1905.
    24. Berry, C.C., Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. Journal of Materials Chemistry, 2005. 15(5): p. 543-547.
    25. Toprak, M.S., et al., Spontaneous assembly of magnetic microspheres. Advanced Materials, 2007. 19(10): p. 1362-1368.
    26. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    27. Goli, P., et al., Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano letters, 2012. 12(11): p. 5941-5945.
    28. Dang, W., et al., Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano letters, 2010. 10(8): p. 2870-2876.
    29. Vogg, G., M. Brandt, and M. Stutzmann, Polygermyne—a prototype system for layered germanium polymers. Advanced Materials, 2000. 12(17): p. 1278-1281.
    30. Chernozatonskii, L.A., B.N. Mavrin, and P.B. Sorokin, Determination of ultrathin diamond films by Raman spectroscopy. physica status solidi (b), 2012. 249(8): p. 1550-1554.
    31. Naguib, M., et al., Two‐Dimensional Nanocrystals: Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 (Adv. Mater. 37/2011). Advanced Materials, 2011. 23(37): p. 4207-4207.
    32. Kawamura, F., H. Yusa, and T. Taniguchi, Synthesis of rhenium nitride crystals with MoS2 structure. Applied Physics Letters, 2012. 100(25): p. 251910.
    33. Tulsky, E.G. and J.R. Long, Dimensional reduction: a practical formalism for manipulating solid structures. Chemistry of Materials, 2001. 13(4): p. 1149-1166.
    34. Butler, S.Z., et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano, 2013. 7(4): p. 2898-2926.
    35. Schaak, R.E. and T.E. Mallouk, Prying apart Ruddlesden− Popper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chemistry of materials, 2000. 12(11): p. 3427-3434.
    36. Tanaka, T., et al., Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chemistry of materials, 2003. 15(18): p. 3564-3568.
    37. Ida, S., et al., Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. Journal of the American Chemical Society, 2008. 130(43): p. 14038-14039.
    38. Vogt, P., et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters, 2012. 108(15): p. 155501.
    39. Ruggiero, C., et al., Emergence of surface states in nanoscale Cu 2 N islands. Physical Review B, 2011. 83(24): p. 245430.
    40. Heinrich, A., et al., Single-atom spin-flip spectroscopy. Science, 2004. 306(5695): p. 466-469.
    41. Olsson, F.E., et al., Multiple charge states of Ag atoms on ultrathin NaCl films. Physical review letters, 2007. 98(17): p. 176803.
    42. Sterrer, M., et al., Control of the charge state of metal atoms on thin MgO films. Physical review letters, 2007. 98(9): p. 096107.
    43. Potapenko, D.V., J. Hrbek, and R.M. Osgood, Scanning tunneling microscopy study of titanium oxide nanocrystals prepared on Au (111) by reactive-layer-assisted deposition. ACS nano, 2008. 2(7): p. 1353-1362.
    44. Peng, Y., et al., Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chemistry Letters, 2001. 30(8): p. 772-773.
    45. Feng, J., et al., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Advanced materials, 2012. 24(15): p. 1969-1974.
    46. Plashnitsa, V.V., et al., Synthetic strategy and structural and optical characterization of thin highly crystalline titanium disulfide nanosheets. The journal of physical chemistry letters, 2012. 3(11): p. 1554-1558.
    47. Cui, Y., et al., Diameter-controlled synthesis of single-crystal silicon nanowires. Applied Physics Letters, 2001. 78(15): p. 2214-2216.
    48. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292(4): p. 567-574.
    49. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
    50. Li, C., et al., Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS nano, 2012. 6(10): p. 8868-8877.
    51. Shi, Y., et al., van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters, 2012. 12(6): p. 2784-2791.
    52. Morgan, A. and G. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface. Surface Science, 1968. 12(3): p. 405-425.
    53. Sutter, P.W., J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature materials, 2008. 7(5): p. 406-411.
    54. Coraux, J., et al., Structural coherency of graphene on Ir (111). Nano letters, 2008. 8(2): p. 565-570.
    55. Hamilton, J. and J. Blakely, Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science, 1980. 91(1): p. 199-217.
    56. Choi, T., C. Ruggiero, and J. Gupta, Tunneling spectroscopy of ultrathin insulating Cu 2 N films, and single Co adatoms. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2009. 27(2): p. 887-890.
    57. Lee, C., et al., Anomalous lattice vibrations of single and few-layer MoS2. arXiv preprint arXiv:1005.2509, 2010.
    58. Kim, J., et al., Visualizing graphene based sheets by fluorescence quenching microscopy. Journal of the American Chemical Society, 2009. 132(1): p. 260-267.
    59. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
    60. Gutiérrez, H.R., et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano letters, 2012. 13(8): p. 3447-3454.
    61. Krivanek, O.L., et al., Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010. 464(7288): p. 571.
    62. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
    63. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
    64. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
    65. Eda, G., et al., Coherent atomic and electronic heterostructures of single-layer MoS2. Acs Nano, 2012. 6(8): p. 7311-7317.
    66. Wilson, J. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
    67. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
    68. Zeng, Z., et al., Single‐Layer Semiconducting Nanosheets: High‐yield preparation and device fabrication. Angewandte Chemie International Edition, 2011. 50(47): p. 11093-11097.
    69. Zeng, Z., et al., An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets. Angewandte Chemie International Edition, 2012. 51(36): p. 9052-9056.
    70. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett, 2012. 12(3): p. 1538-1544.
    71. Lee, Y.H., et al., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
    72. Lin, Y.-C., et al., Wafer-scale MoS 2 thin layers prepared by MoO 3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641.
    73. Tuxen, A., et al., Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS nano, 2010. 4(8): p. 4677-4682.
    74. Karunadasa, H.I., et al., A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012. 335(6069): p. 698-702.
    75. Yin, W., et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS nano, 2014. 8(7): p. 6922-6933.
    76. Choi, Y.S., et al., Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization. Macromolecules, 2001. 34(26): p. 8978-8985.
    77. Liang, Y., et al., A new strategy to improve the gas barrier property of isobutylene–isoprene rubber/clay nanocomposites. polymer testing, 2008. 27(3): p. 270-276.

    QR CODE