簡易檢索 / 詳目顯示

研究生: 許天耀
Tien-Yao Hsu
論文名稱: Zn2P2S6及Ni2P2S6之晶體成長與特性研究
Crystal Growth and Characterization of Zn2P2S6 and Ni2P2S6
指導教授: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
口試委員: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
陳俊維
Chun-Wei Chen
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 過度金屬二磷六硫化物調製光譜穿透光譜
外文關鍵詞: Zinc phosphorus sulfide, transition metal phosphorus trichalcogenide, Nickel hexathiodiphosphate
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文題目所用的Zn2P2S6和Ni2P2S6晶體為本實驗室用化學氣相傳導法(Chemical vapor transport method, CVT)生長,為層狀單晶材料,屬於過渡性金屬硫屬磷酸鹽系列晶體,該系列晶體材料能隙涵蓋範圍甚廣,可從紫外光波長至紅外光波長,因此現今許多學者對這系列材料有極大的興趣並研究與探討,期許在這類較新穎的材料中能有突破性的發展與應用。
而本論文中選用Zn2P2S6和Ni2P2S6來進行一系列的結構分析與光學特性研究,Zn2P2S6為寬能隙半導體,Ni2P2S6為低能隙半導體。首先我們會進行材料的結構分析,包括X射線能量散佈分析儀(EDS)、X射線晶體繞射分析儀 (XRD)以及拉曼光譜實驗。EDS可以分析出晶體的原子比例,確保我們成長出的單晶晶體品質,以利之後量測實驗分析的可信度。從X-ray晶格繞射分析結果,可以得知此兩種晶體皆屬於單斜結構,藉由布拉格繞射公式及單斜晶體公式計算出兩者的晶格常數。Zn2P2S6的晶格常數a=5.966Å , b=10.32Å, c=6.717Å,Ni2P2S6為a=5.741 Å , b=10.05 Å , c=6.576 Å。將這兩晶體的晶格常數互相比較,因為具有相同結構M2P2S6,可以發現晶格常數相似,而造成Zn2P2S6比Ni2P2S6的晶格常數大的原因是因為Zn(原子序=30)比Ni(原子序=28)原子具有較大的原子半徑。在拉曼光譜實驗可以比較兩者的振動模態,之後在結果與討論會詳細分析兩者之間有什麼相同的振動模態以及不同之處進行比較。
在光學量測實驗中,我們做了熱調制實驗與光穿透實驗,透過這兩種實驗可以得知兩種材料的激子躍遷訊號,Zn2P2S6的室溫躍遷訊號在3.438V,在低溫30K移至3.658eV;而Ni2P2S6的室溫躍遷訊號在1.362eV,低溫15K移至1.474eV,並且在低溫還可觀察到額外兩個激發訊號位在1.492eV和1.538eV。比較兩種不同機制的光學實驗有利於我們得到更完整的資訊。最後在熱探針實驗部分,利用載子濃度梯度的變化,我們可以得知Zn2P2S6為n-type半導體,Ni2P2S6為p-type半導體。
本論文對Zn2P2S6及Ni2P2S6的材料分析與光學特性研究,相信對有共同興趣的學者可以提供有用的參考資料,以利未來在材料應用上能有突破的發展。


Transition metal phosphorus trichalcogenides (TMPTs) have recently started to attract interest, since the bulk TMPTs possess band gaps in a range of 1.3−3.5 eV, from the wavelength of ultraviolet light to the wavelength of infrared light. Therefore, many scholars have studied and discussed this series of materials, and hope to have breakthrough development and application in such relatively novel materials. In this thesis, M2P2S6(M=Zn, Ni) layered single crystal series have been grown by Chemical vapor transport (CVT) method using Iodine (I2) as transport agent. These materials has been classified as TMPTs materials belonging to family with a structural formula of MPX3(M=V, Mn, Fe , Ni, Cd, Zn; X=S, Se). In this thesis, Zn2P2S6 and Ni2P2S6 were selected for a series of structural analysis and optical characterization. The structural analysis of Zn2P2S6 and Ni2P2S6 were identified using Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), and Raman spectroscopy. From analyzing XRD pattern, these series crystal are determined to be crystallized in monoclinic structure, and the lattice constants of the two crystals are calculated by the Bragg diffraction formula and the monoclinic crystal formula. The lattice constants of Zn2P2S6 are a = 5.966 Å, b = 10.32 Å, c = 6.718 Å, and Ni2P2S6 are a = 5.741 Å, b = 10.05 Å, and c = 6.576 Å. By comparing the lattice constants of these two crystals, it can be found that the lattice constant of Zn2P2S6 is larger than Ni2P2S6 owing to Zn (Z = 30) has a larger atomic radius than Ni (Z = 28) atoms. In Raman spectroscopy, the vibration modes of Zn2P2S6 and Ni2P2S6 can be observed, and we can compare the similarities between these two materials. Optical properties of Zn2P2S6 and Ni2P2S6 have been characterized using temperature dependent Thermoreflectance (TR) and the absorption measurement. By comparing optical absorption and thermoreflectance spectra at room temperature, we can determine the band gap of M2P2S6(M=Zn, Ni) at 3.438V and 1.362eV, respectively. The difference of carrier concentration has been calculated using Hot probe measurement and it shows that Zn2P2S6 is n-type conductivity materials while Ni2P2S6 is p-type conductivity.This studies demonstrate the material analysis and optical properties of Zn2P2S6 and Ni2P2S6. We believe that this paper can provide useful information for scholars with common interests.

中文摘要 II Abstract IV 致謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 第二章 晶體成長 3 2.1 化學氣相傳導法 (CVT) 3 2.2 晶體成長設備介紹 5 2.2.1真空系統 5 2.2.2長晶反應系統 7 2.3 長晶程序 9 2.3.1元素比例及石英管清洗作業 9 (1)元素比例 9 2.3.2單晶化合及成長 11 第三章 實驗原理與量測技術 14 3.1 X射線能量散佈分析儀 (EDS) 15 3.2 X射線晶體繞射分析儀 (XRD) 18 3.3 拉曼散射光譜 (Raman Scattering) 22 3.4 調制光譜 25 3.4.1前言 25 3.4.2 熱調制光譜實驗方法與系統架構 27 3.5 光穿透光譜 31 3.6 熱探針實驗 34 第四章 結果與討論 36 4.1 能量散佈儀之晶格材料結構 36 4.2 X-ray晶格繞射實驗分析 39 4.3 拉曼散射光譜分析 43 4.4 熱調制光譜量測結果分析 49 4.5 光穿透光譜及吸收係數 54 4.6 熱探針實驗 56 第五章 結論 58 參考文獻 61

[1] A. J. Martinolich, C. W. Lee, I-Te Lu, S. C. Bevilacqua, M. B. Preefer, M. Bernardi, A. Schleife, and K. A. See, "Solid-State Divalent Ion Conduction in ZnPS3," Chem. Mater., vol. 10, pp. 3652-3661, 2019.

[2] C. T. Kuo, M. Neumann, K. Balamurugan, H. Ju Park, Soonmin Kang, Hung Wei Shiu, Jin Hyoun Kang, Byung Hee Hong, Moonsup Han, Tae Won Noh and Je-Geun Park, "Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals," Sci Rep, vol. 6, pp. 20904, 2016.
[3] H. Schäfer, Chemical transport reactions. 2013.
[4] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials," Phys Rev B Condens Matter, vol. 35, no. 17, pp. 9085-9090, Jun 15 1987.
[5] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics. Wiley New York, 1976.
[6] D. F. Hornig, "The vibrational spectra of molecules and complex ions in crystals. I. General theory," J. Chem. Phys. vol. 16, no. 11, pp. 1063-1076, 1948.
[7] F. H. Pollak and H. Shen, "Modulation Spectroscopy of Semiconductors - Bulk Thin-Film, Microstructures, Surfaces Interfaces and Devices," (in English), Mater. Sci. Eng. R-Rep, vol. 10, no. 7-8, pp. 275-374, Oct 1 1993.
[8] C. C. M. Martinez, Z. Sofer, D. Sedmidubský, Š. Huber, A. Y. S. Eng, and M. Pumera, "Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties," ACS Appl. Mater., vol. 9, no. 14, pp. 12563-12573, 2017.
[9] F. Wang, T. A. Shifa, P. Yu, P. He, Y. Liu, F. Wang, Z. Wang, X. Zhan, X. Lou, F. Xia, and J. He, "New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides," Adv. Funct. Mater., vol. 28, pp. 1802151, 2018.
[10] S. Tian, X. Li, A. Wang, R. Prins, Y. Chen, and Y. Hu, "Facile Preparation of Ni2P with a Sulfur-Containing Surface Layer by Low-Temperature Reduction of Ni2P2S6," Angew. Chem., vol. 128, pp. 4098–4102, 2016.
[11] X. Zhang, S. Zhang, J. Li and E. Wang, "One-step synthesis of well-structured NiS–Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting," J. Mater. Chem. A., vol. 5, pp. 22131–22136, 2017.
[12] A. Hashemi, H. P. Komsa, M. Puska and A. V. Krasheninnikov,"Vibrational Properties of Metal Phosphorus Trichalcogenides from First-Principles Calculations," J. Phys. Chem. C., vol. 121, pp. 27207–27217, 2017.
[13] K. Z. Du, X. Z. Wang, Y. Liu, P. Hu, M. I. B. Utama, C. K. Gan, Q. Xiong and C. Kloc," Weak Van der Waal Stacking, Wide-Range Band Gap and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides," ACS Nano, vol. 10, no. 2, pp. 1738–1743, 2016.
[14] R. N. Jenjeti, R. Kumar and S Sampath," Two-dimensional, Few-Layer NiPS3 for flexible humidity sensor with high selectivity," J. Mater. Chem. A, vol. 7, pp. 14545–14551, 2019
[15] D. A. Cleary, A. H. Francis and E. Lifshitz," Photoluminescence studies of layered transition metal phosphorus chalcogenides and their pyridine intercalation compounds," J. Lumin., vol. 35, pp. 163-170, 1986.
[16] S. P. Sibley and A. H. Francis," Photoluminescence and ODMR Studies of Lamellar Cd2P2S6 and Zn2P2S6 Lattices," J. Phys. Chem., vol. 98, pp. 5089-5094, 1994.
[17] N. Ismail, M. Madian and A. A. E. Meligi," Synthesis of NiPS3 and CoPS3 and its hydrogen storage capacity," J. Alloy. Compd., vol. 588, pp. 573-577, 2014.
[18] R. N. Jenjeti, R. Kumar, M. P. Austeria and S. Sampath," Field Effect Transistor Based on Layered NiPS3," Sci Rep, vol. 8(1), pp. 8586, 2018.
[19] S. Y. Kim, T. Y. Kim, L. J. Sandilands, S. Sinn, M. C. Lee, J. Son, S. Lee, K. Y. Choi, W. Kim, B. G. Park, C. Jeon, H. D. Kim, C. H. Park, J. G. Park, S. J. Moon, and T. W. Noh," Charge-Spin Correlation in van der Waals Antiferromagnet NiPS3," Phys. Rev. Lett., vol. 120, pp. 136402, 2018.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 2024/07/26 (校外網路)
全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE