簡易檢索 / 詳目顯示

研究生: 吳仰鍾
Yang-Chung Wu
論文名稱: 鉛酸鋇陶瓷之基本特性與其添加入銀電極對壓電陶瓷性質之改良
Investigation of Piezoelectric Ceramic Properties and Mircostructural Study in BaPbO3 Modified Silver Electrodes
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 潘漢昌
Han-Chang Pan
洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 壓電陶瓷電極鉛酸鋇
外文關鍵詞: BaPbO3, Piezoelectric Ceramic, electrode
相關次數: 點閱:335下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討鉛酸鋇陶瓷之基本特性與其添加入銀電極對壓電陶瓷之特性改良,利用X光繞射分析中鉛酸鋇陶瓷與混合電極的結構,四點探針量測其電阻率,光學/電子顯微鏡觀察微觀結構,最後量測其漏電流、電滞曲線與疲勞特性,並評估銀電極及BPO+Ag混合電極對PMNZT特性之影響。
研究結果顯示在鉛酸鋇(BPO)粉末於800℃煆燒合成,富氧的燒結條件下較空氣中燒結有較佳的導電性,且由於鉛揮發導致晶界處會有PbO液相燒結微觀產生,促使晶粒尺寸明顯成長。在X光繞射分析中,發現添加BPO於銀電極經高溫熱處理(800℃),會出現一些特殊的峰值,利用JCPDS Cards與XRD分析軟體分析得知這些峰值乃是BPO與PMNZT的中間反應物(Pb0.8Ba0.2)ZrO3,和鉛揮發產生的PbO的峰值。電阻率的量測方面,可知添加BPO於銀電極會提升銀電極的電阻率,其原因為BPO的添加會提升銀電極的孔隙;降低銀的晶粒尺寸並提升晶界的量,使得電子傳導有較多阻礙,使電阻率提高。在顯微鏡的分析中可知,銀晶粒尺寸會隨著熱處理的溫度提升而增加;且可觀察到BPO的添加的確有助於抑制銀晶粒尺寸成長與緻密化,此結果可與電阻率的結果相呼應;此外,在EDS的分析上也可發現,微觀結構分成大顆基底Ag與零散分佈的小顆粒主要為Ba、Pb、O所組成,表示BPO可能與銀沒有太多固溶性。
漏電流量測結果發現,純銀電極的漏電流最低,其主要原因於銀電極緻密化程度較BPO+Ag混合電極佳;但是適度BPO添加並於800℃以下熱處理,可避免PMNZT基材中鉛揮發;且由於(Pb0.8Ba0.2)ZrO3生成,將有助於降低漏電流密度。
在鐵電特性量測中可知,BPO的添加有助於銀電極與PMNZT基材的結合,並且使Pr值提升與Ec值降低;此外在鐵電疲勞的量測中可知,添加BPO於銀電極中,將提升PMNZT的Pr值與降低Ec值,使整體元件的鐵電性與疲勞特性較單純利用銀作為電極更加優異。因此,BPO添加於銀電極之混合電極的確有助於提升鐵電陶瓷之鐵電與疲勞特性。
在機電耦合因數Kp量測中,Ag+BPO電極所量得之kp與純銀電極無明顯差異,顯示BPO的添加對kp值沒有負面的影響,甚至能提升其kp值。


In this thesis, we researched the basic properties of BaPbO3 (BPO) ceramic and added BPO powder into silver electrodes to improve the piezoelectric properties of PMNZT. X-Ray diffraction was used to get the crystal structure of BPO modified Ag electrodes; surface morphology and microstructures were observed using OM and SEM. The resistively, leakage current, ferroelectric and piezoelectric properties were measured by a four-point probe, a ferroelectric testing system (Precision workstation) and impedance-gain analyzer (HP-4194A) respectively.
Perovskite BPO powder were gained by calcined in air at 800℃for 24 hours. The resistively of sintered BPO ceramics would be lower if sintered in oxygen rich atmosphere than in air. There were some layer structures in grain boundaries, and grain size in oxygen rich sintered ceramic at 1050℃was much larger than that of in air sintered. We found that the main content of layer structure was PbO, which melted at 880℃ and formed a liquid phase sintering condition; for this result, the grain size were much lager than sintered in other condition.
In X-Ray diffraction of Ag+BPO electrodes, there were some particular peaks after heat treated at 800℃, and we found out that the peaks were (Pb0.8Ba0.2)ZrO3 by fitting with JCPDS Cards. The resistively of electrodes were higher if BPO added. From SEM and OM images, we were informed that grain size of Ag would increase following heat treatment temperature increase, and BPO could restrict the grain growing, this result fitted that informed from resistance measurement. In EDS analysis, microstructures could divided into two parts, one of them is composed of lager grain size of silver in base, the other is composed of smaller grain size of Ba、Pb、O, and it means that there could be less possibility for BPO and silver to be solid soluted into each other. In leakage current measurement, we informed that lead evaporation could be avoid if we add proper amount of BPO in electrode and heat treated under 800℃, and leakage current density could be lower because of (Pb0.8Ba0.2)ZrO3 formed.
In ferroelectric characteristics measurement, addition of BPO into Ag electrodes would be benefit to the combination between electrodes and PMNZT, and risen Pr value and lower Ec value.

中文摘要..................................................i 英文摘要................................................iii 誌謝......................................................v 目錄....................................................vii 表目錄....................................................x 圖目錄...................................................xi 第一章 前言............................................1 第二章 文獻回顧...........................................3 2.1鐵電材料簡介.........................................3 2.1.1鐵電材料的定義...................................3 2.1.2鈣鈦鑛結構.......................................4 2.1.3鐵電材料的特性...................................6 2.1.4改良型鋯鈦酸鉛材料...............................9 2.2電極材料............................................13 2.2.1銀電極..........................................14 2.2.2氧化物電極......................................16 2.2.2.1鉛酸鋇材料..................................17 第三章 實驗方法與步驟....................................23 3.1 實驗藥品規格及儀器規格總表.........................23 3.2實驗步驟............................................26 3.3試片的備製..........................................27 3.3.1配粉............................................28 3.3.2濕球磨..........................................29 3.3.3烘乾............................................29 3.3.4過篩............................................29 3.3.5煆燒............................................29 3.3.6成型............................................30 3.3.7燒結............................................30 3.4電極膠的製作........................................30 3.5電極的製作.. .......................................31 3.6試片的量測..........................................31 3.6.1試片密度量測....................................31 3.6.2 X-ray繞射分析..................................32 3.6.3 SEM微觀與界面分析..............................32 3.6.4電阻率量測......................................32 3.6.5電滯曲線及鐵電疲勞特性量測......................34 3.6.6漏電流量測......................................34 3.6.7介電特性檢測....................................34 3.6.8共振頻率與共振阻抗量測..........................35 第四章 實驗結果與討論....................................36 4.1粉末與塊材試片製備..................................36 4.1.1.1鋯鈦錳鈮酸鉛粉末製備..........................36 4.1.1.2 鋯鈦錳鈮酸鉛塊材製備.........................37 4.1.2.1 鉛酸鋇粉末製備...............................38 4.1.2.2 鉛酸鋇陶瓷塊材製備...........................41 4.1.3.1 純銀粉末.....................................44 4.2鉛酸鋇陶瓷之電阻率與微觀影像分析....................45 4.2.1 鉛酸鋇陶瓷之電阻率.............................45 4.2.2 鉛酸鋇陶瓷之微觀影像分析.......................47 4.2.3鉛酸鋇陶瓷之X射線光電子能譜分析.................55 4.3熱處理後厚膜之X光繞射分析...........................58 4.3.1 BPO+Ag厚膜X光繞射分析..........................58 4.3.2 BPO厚膜及其界面X光繞射分析 4.4厚膜電極之電阻率量測................................65 4.5電極之微觀影像分析..................................67 4.5.1 光學顯微鏡觀察與分析...........................67 4.5.2 SEM微觀分析....................................69 4.6 鐵電特性分析.......................................75 4.6.1 漏電流量測.....................................75 4.6.2 鐵電與疲勞特性之量測...........................79 4.6.2.1 鐵電特性量測...............................79 4.6.2.2 鐵電疲勞量測...............................80 4.7介電特性檢測........................................87 4.8機電耦合因數量測....................................88 第五章 結論..............................................89 參考文獻.................................................91

1.S. Sato, Y. Nakano, A. Sato, T. Nomura, “Mechanism of Improvement of Resistance Degradation in Y-doped BaTiO3 Based MLCCs with Ni Electrodes under Highly Accelerated Life Testing”, J. Eur. Ceram. Soc., 19[6], 1061-1065(1999).
2.J. Y. Yoo, K. H. Yoon, S. M. Hwang, S. J. Suh, J. S. Kim, C. S. Yoo,“Electrical Characteristics of High Power Piezoelectric Transformer for 28W Fluorescent Lamp”, Sens. Actuators. A Phys., 90[5], 132-137(2001).
3.J. Y. Yoo, K. H. Yoon, Y. W. Lee, S. J. Suh, J. S. Kim, C. S. Yoo, “Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio”, Jpn. J. Appl. Phys., 39[5], 2680-2684(2000).
4.S. Ezhilvalavan, T. Y. Tseng,“Progress in The Developments of (Ba,Sr)TiO3 (BST) Thin Films for Gigabit Era DRAMs”, Mater. Chem. Phys., 65[8], 227-248(2000).
5.S. R. Gilbert, D. Ritchey, M. Tavassoli, J. Amano, L. Colombo, S. R. Summerfelt,“Cross-Contamination during Ferroelectric Nonvolatile Memory Fabrication”, J. Electrochem. Soc., 148[4], 195-199(2001).
6.S. Caston, R. McCarley, “Characteristics of Nanoscopic Au Band Electrodes”, J. Electroanal. Chem., 259[7], 124-134(2002).
7.B. Vilquin, G. Le Rhun, R. Bouregba, G. Poullain, H. Murray,“Effect of In Situ Pt Bottom Electrode Deposition and of Pt Top Electrode Preparation on PZT Thin Films Properties”, Appl. Surf. Sci., 515[12], 63-73(2002).
8.R. H. Zuo, L. T. Li, Z. L. Gui,“Effects of BaTiO3 Additive on Densification Mechanism of Silver–Palladium Paste”, Mater. Chem. Phys., 74[3], 182-186(2002).
9.L. Szpyrkowicz, J. Naumczyk, F. Grandi, “Electrochemical Treatment of Tannery Wastewater Using Ti/Pt and Ti/Pt/Ir Electrodes”, Water Res., 29[2], 517-524(1995).
10.T. Satoh, H. Fujikawa, M. Ishii, T. Ohwaki and Y.Taga, “Interfacial Stability Between Ta-Sn-O Films and Indium Tin Oxide Electrodes”, Jpn. J. Appl. Phys., Part 2., 36[12], 1699-1701(1997).
11.陳思翰,“氧化銦錫薄膜的奈米表面電性研究”, 科儀新知, 新竹, 第22-26頁,民國90年10月。
12.S. Barison, A. De Battisti, M. Fabrizio, S. Daolio, C. Piccirillo, “Surface Chemistry of RuO2/IrO2/TiO2 Mixed-Oxide Electrodes: Secondary Ion Mass Spectrometric Study of the Changes Induced by Electrochemical Treatment”, Rapid Commun. Mass Spectrom., 14[11], 2165-2169(2000).
13.J. H. Ahn, W. J. Lee, H. G. Kim, “Oxygen Diffusion Through RuO2 Bottom Electrode of Integrated Ferroelectric Capacitors”, Mater. Lett., 38[2], 250-253(1999).
14.M. S. Chen, T. B. Wu, J. M. Wu, “Effect of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 68[10], 1430-1432(1996).
15.W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang,“Top-Interface-Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443(2000).
16.S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, “Effect of Oxygen Stoichiometry on the Electrical Properties of La0.5Sr0.5CoO3 Electrodes”, J. Appl. Physi., 81[8], 3543-3547(1997).
17.R. Ramesh, A. Inam, W. K. Chan, F. Tillerot, C. C. Chang, “Ferroelectric PbZr0.2Ti0.8O3 Thin Films on Epitaxial Y-Ba-Cu-O”, Appl. Phys. Lett., 59[27], 3542-3544(1991).
18.H. Kurogi, Y. Yamagata, K. Ebihara, N. Inoue, ”Preparation of PZT Thin Films on YBCO Electrodes by KrF Excimer Laser Ablation Technique”, Surface and Coatings Technology, 100-101, 424-427(1998).
19.R. Hoppe, K. Blinne, “Alkaline Earth Hexafluoroplumbates (IV)”, Z. Anorg. Allg. Chem., 293, 251-257(1958).
20.R. D. Shannon, P. E. Bierstedt, “Single-Crystal Growth and Electrical Properties of BaPbO3”, J. Am. Ceram. Soc., 53[11], 635-636(1970).
21.S. M. Moussa, B. J. Kennedy, T. Vogt., “Structural Variants in ABO3 Type Perovskite Oxides. On the Structure of BaPbO3”, Solid State Commun., 119, 549-552(2001).
22.T. Nitta, K. Nagase, S. Hayakawa, Y. Iida, “Formation and Properties of Barium Metaplumbate”, J. Am. Ceram. Soc., 48[12], 642-644(1965).
23.A. W. Sleight, J. L. Gillson, P. E. Bierstedt, “High-Temperature Superconductivity in the BaPb1-xBixO3 System ”, Solid State Commun., 17, 27-28(1975).
24.F. Wang, A. Uusimaki, S. Leppavuori, H. X. Zhang, “Preparation of Conductive Barium Metaplumbate Thin Film Using Solution Methode”, Mater. Res. Bull., 31[1], 37(1996).
25.Y. Kodama, N. Murayama, Y. Torii, M. Yasukawa, “Chemical Preparation and Properties of Semi-Metal BaPbO3 Ceramics”, J. Mater. Sci. Lett., 17, 1999-2001(1998).
26.M. C. Chang, J. M. Wu, S. Y. Chen, “The Effect of Ball-Milling Solvent on the Decomposition Properties of Ba(Pb1-xBix)O3”, Mater. Chem. Phys., 69, 226-229(2001).
27.Y. R. Luo, J. M. Wu, “BaPbO3 Perovskite Electrode for Lead Zirconate Titanate Ferroelectric Thin Films”, Appl. Phys. Lett., 79[12], 3669-3671(2001).
28.C. S. Liang, J. M. Wu, M. C. Chang, “Ferroelectric BaPbO3/ PbZr0.53Ti0.47O3/BaPbO3 Heterostructures”, Appl. Phys. Lett., 81[19],3624-3626(2002).
29.F. P. Skeele, R. E. Newnham, L. E. Cross, “Barium Metaplumbate Ceramic Electrodes for Ceramic Capacitors”, J. Am. Ceram. Soc., 71[5], C263-C267(1988).
30.M. Suzuki, “Hall Coefficient and Oxygen Deficiency in BaPb0.7Bi0.3O3 Single-Crystal Thin Films”, Jpn. J. Appl. Phys., 31, Part 1, 12A, 3830-3833(1992).
31.M. Suzuki, “Properties of BaPb1-xBixO3 as Observed in Single-Crystal Thin Films”, Jpn. J. Appl. Phys., 32, Part 1, 6A, 2640-2647(1993).
32.H. Namatame, A. Fujimor, H. Takagi, S. Uchida, F. M. F. de Groot, J. C. Fuggle, “Electronic Structure and Metal-Semiconductor Transition in BaPb1-xBixO3 Studied by Phtoemission and X-Ray-Absorbtion Spectroscopy”, Phys. Rev. B, 48[23], 917-925(1993).
33.邱繼洋, “添加銀之氧化物電極搭配鋯鈦錳鈮酸鉛壓電陶瓷微結構與電性之研究”, 國立台灣科技大學碩士論文 (2003).
34.鄭乃熒, “改良電極以提升壓電元件的抗疲勞特性”, 國立台灣科技大學碩士論文 (2004).
35.張恭豪, “磁控式濺鍍法製備La0.7Sr0.3MnO3氧化物薄膜電極於鐵電材料之電性研究”, 國立台灣科技大學碩士論文 (2004).
36.L. L. Hench, J. K. West, “Principles of Electronic Ceramic”, John Wiley and Sons, New York, 238(1990).
37.Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 1-15(1991).
38.Márta Déri, “Ferroelectric Ceramics”, Maclaren and Sons LTD, London, 1-7(1966).
39.Márta Déri, “Ferroelectric Ceramics”, Maclaren and Sons LTD, London, 8-9(1966).
40.Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102(1991).
41.吳朗, “電子陶瓷-壓電”, 全欣科技圖書, 台北, 第85頁, 民國83年。
42.吳朗, “電子陶瓷-壓電”, 全欣科技圖書, 台北, 第7-78頁, 民國83年。
43.G. H. Haertling, “Ferroelectric Ceramics:History and Technology”, J. Am. Ceram. Soc., 82[4], 797-818(1999).
44.A. Ballato, “Piezoelectricity:Old Effect, New Thrusts”, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 42[5], 916-925(1995).
45.O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, T. Inoue, “Piezoelectric Ceramic Transformer Operating in Thickness Extensional Vibration Mode for Power Supply”, IEEE Ultra. Symp., 483-488(1992).
46.Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 109(1991).
47.池田拓郎, 基本壓電材料, 陳世春譯, 復漢出版社印行, p. 1-3, 1985.
48.O. Ise, K. Satoh, Y. Mamiya, “High Power Characteristic of Piezoelectric Ceramics in Pb(Mn1/3Nb2/3)O3- PbTiO3-PbZrO3 System,” J. Appl. Phys., 38 [7] 5531-5534(1999).
49.C. Galassi, E. Roncari, C. Capiani, F. Cracium, “Processing and Characterization of High Qm Ferroelectric Ceramics,” J. Eur. Ceram. Soc., 19 [6] 1237-1241(1999).
50.許琦華, “微波燒結鈦鋯錳鈮酸鉛陶瓷之電性與微觀結構之研究”, 國立台灣科技大學碩士論文 (2002).
51.A. J. Moulson, J. M. Herbert, Electroceramics, Thomson Press (India) Ltd, Cambridge, 22-42, 1990.
52.I. K. Yoo, S. B. Desu, J. Xing, “In Ferroelectric Thin Films III”, MRS Sym. Proc., 310 (1993).
53.J. Ryu, J. Choi, H. Kim, “Effect of Heating Rate on the Sintering Behavior and the Piezoelectric Properties of Lead Zirconate”, J. Am. Ceram. Soc., 84 [4], 902–904(2001).
54.R. D. Shannon, “Effective Ionic Radii in Oxides and Fluorides”, Acta Cryst., B25, 925-946(1969).
55.C. Kwon, M. C. Robson, K. C. Kim, J. Y. Gu, S. E. Lofland, S. M. Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatsan, A. R. Kratz, R. D. Gomez, R. Ramesh, “Stress-Induced Effects in Epitaxial (La0.7Sr0.3)MnO3 Films”, J. Magn. Magn. Mater., 172 [11], 229-236 (1997).
56.A. Tiwari, A. Chug, C. Jin, D. Kumar, J. Narayan, “Integration of Single Crystal La0.7Sr0.3MnO3 Films with Si(001)”, Solid State Commum., 121 [11] 679-682 (2002).
57.W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang, “Top-Interface- Controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.48)O3 Ferroelectric Thin Films on La0.5Sr0.5MnO3 Electrodes”, Appl. Phys. Lett., 77 [10], 3441-3443 (2000).
58. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, M. Tsukada, “Top-Interface-Controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric Capacitors”, Appl. Phys. Lett., 74 [6], 3552-3554(1999).
59.S. F. Wang, J. P. Dougherty, W. Huebner, J. G. Pepin, “Silver Palladium Thick-Film Conductors”, J. Am. Ceram. Soc., 77 [12], 3051-3072(1994).
60.M. K. Bhan, P. K. Nag, G.P. Miller, J. C. Gregory, “Chemical and Morphological Changes on Silver Surfaces Produced by Microwave Generated Atomic Oxygen”, J. Vac. Sci. Technol., A, 12[3], 99(1994).
61.M. Déri, “Ferroelectric Ceramics”, Maclaren and Sons Ltd, London, 1-9,1966.
62.G. Arlt, D. Hennings, G. de With, “Dielectric Properties of Fine Grained Barium Titanate Ceramics”, J. Appl. Phys., 58[8], 1619-1625 (1985).
63.黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會, 民國92年, 148-155。
64.R. M. German, “Liquid Phase Sintering”, Plenum Press, 1985.
65.侯春樹, “鈦酸鍶鉛鐵電陶瓷材料鐵電疲勞機制之研究”, 國立台灣科技大學博士論文 (2003).
66.C. L. Sun, H. W. Wang, M. C. Chang, M. S. Lin, S. Y. Chen, ”Characterization of BaPbO3 and Ba(Pb1-xBix)O3 Thin Films”, Mater. Chem. Phys, 78, 507-511(2002).
67.Y. J. Yu, H. L. W. Chang, F. P. Wang, L. C. Zhao, “BaPbO3 Conductive Coating Layers on Platinized Si Substrate for The Growth of PbZr1-xTixO3 Thin Films”, Mater. Lett., 58, 1885-1888(2004).
68.”IEEE Standard on Piezoelectricty”, Published by The Institute of Electrical and Electronics Engineers, New York, 28-50(1987).
69. Landolt-Börnstein, Group III, Condensed Matter, Band 16, Springer-Verlag.

無法下載圖示 全文公開日期 2006/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2006/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE