簡易檢索 / 詳目顯示

研究生: 張婉君
Wan-chun Chang
論文名稱: 以反應式離子束濺鍍法沉積摻雜鋁氧化鋅薄膜之特性分析
Growth and characterization of Al doped ZnO prepared by reactive ion beam sputtering deposition
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 55
中文關鍵詞: 氧化鋅掺鋁反應式濺鍍IBSD
外文關鍵詞: Al doped ZnO, reactive IBSD
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用反應式離子束濺鍍法在矽(100) 基板上沉積氧化鋅掺雜鋁薄膜,利用改變基板溫度、鋁摻雜含量來觀察薄膜特性的改變,分別使用200℃、100℃及室溫來成長薄膜。200℃沉積之晶粒大小最大約為90 nm,但是100℃及室溫摻雜前後皆為非晶結構。200℃成長薄膜在鋁含量為3.2 at. %時將電阻率由未摻雜前的1.40×102 降低至5.0×10-2 Ωcm,而載子濃度與遷移率分別為6.71×1019 cm-3及2.0 cm2V-1s-1,超過鋁濃度極限之後造成電組率的下降是因為晶粒邊界雜質散射增強的關係。100℃電阻率在3.2 at. %時從5.74 降低2.4×10-1 Ωcm 而室溫在1.9 at. %時從3.97 Ωcm降至2.6×10-1 Ωcm。200℃成長在可見光區穿透率有80%以上,無論鋁濃度為何吸收極限都往短波長移動,指出能隙有寬化現象。由PL光譜發現200℃成長薄膜在3.27 eV有強近能隙發光及較弱的缺陷發光,相較之下,AZO的近能隙發光往高能量位移30 meV至3.30 eV是為Burstein-Moss效應。XPS分析可以發現在摻雜鋁之後O1s峰值明顯可以分成兩個高斯訊號峰在530.2 及 531.6 eV,指出鋁摻雜後造成缺陷增加使晶格氧減少。


Al-doped ZnO (AZO) thin films have been deposited on Si(100) substrates by reactive ion beam sputtering deposition at 200, 100 C and room temperatures. The effect of growth temperatures and Al concentrations on the properties of ZnO thin films were investigated. AZO thin films deposited at 200C exhibits a preferred growth orientation along the (002) direction with a grain size of ~ 90 nm, while AZO deposited at 100℃ and room temperatures are amorphous. The resistivity of AZO deposited at 200C decreases from 1.40×102 to 5.0×10-2 Ω cm as Al concentration increases from 0 to 3.2 at. %. At this concentration, the mobility and carrier concentration of AZO thin films are 6.71×1019 cm-3 and 2.0 cm2V-1s-1, respectively. Higher Al concentration causes increase of resistivity, which is due to increased scattering of carrier at grain boundaries. The resistivity of AZO deposited at 100C and room temperature also decreases from 5.74 and 3.97 Ω cm to 2.4×10-1 and 2.6×10-1Ω cm as Al concentration increases from 0 to 3.2 at. % and 1.9 at. %while both increase at higher Al concentration. The transmittance of AZO thin films deposited at 200C at the visible range is larger than 80 %. Regardless of Al concentrations, the absorption edge move to shorter wavelength, indicating increase of bandgap. PL analysis of ZnO deposited at 200C shows strong near band edge emission at 3.27 eV and weak defect related deep level emission. Comparing with un-doped ZnO, the near band edge emission energy of AZO blue-shifts by 30 meV to 3.30 eV, which is due to Burstein-Moss shift. XPS analysis of AZO indicates that the core level spectrum of O1s can be deconvoluted into two Gaussians centered at 530.2 and 531.6 eV, indicating increased amount of oxygen atoms located at oxygen deficient regions due to the incorporation of Al.

論文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1前言與研究動機 1 1.2研究目的 2 1.3氧化鋅簡介 3 1.4氧化鋅發光機制 4 1.4.1紫外光發光 4 1.4.2綠光發光 4 第二章 文獻回顧 6 2.1射頻磁控濺鍍法(radio frequency magnetron sputtering, RF sputtering) 6 2.2 離子束濺鍍沉積法 7 2.3 透明導電薄膜(transparent conducting oxide, TCO) 簡介 8 2.4 摻鋁氧化鋅文獻探討 10 第三章 實驗與分析 18 3.1 實驗方法與流程 18 3.2 實驗分析、量測儀器介紹 21 3.2.1 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy) 21 3.2.2 光激螢光光譜(Photoliminescence, PL) 22 3.2.3 X-ray 繞射儀(X-ray diffraction) 23 3.2.4 X光光電子譜(X-ray photoelectron spectroscopy) 24 3.2.5 霍爾量測(Hall measurement) 26 3.2.6 穿透率 28 第四章 實驗結果與討論 29 4.1 FE-SEM分析 29 4.2 光激螢光光譜分析 37 4.3 X-ray 繞射分析 39 4.4 XPS分析 41 4.5霍爾量測分析 43 4.6 穿透率分析 46 第五章 結論與未來展望 47 參考文獻 49

[1] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa,“Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun., Vol. 103, pp. 459-463, 1997.
[2] T. Aoki, Y. Hatanaka and D. C. Look, “ZnO diode fabricated by excimer-laser doping.” Appl. Phys. Lett.,Vol. 76, pp. 3257-3258, 2000.
[3] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lua, M. Wraback and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on sapphire by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 85, pp.2595-2602, 1999.
[4] W. Tang and D. C. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films, Vol. 238, pp. 83-87, 1994.
[5] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. , Vol. 98, pp. 1-103, 2005.
[6] F. Yakuphanoglu, Y. Caglar, S. Ilican and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, Vol. 394, pp. 86-92, 2007.
[7] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
[8] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
[9] S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
[10] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnol., Vol. 18, pp. 1-8, 2007.
[11] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., Vol. 148, pp. 110-113, 2001.
[12] G. Roussos, H. J. Schulz and M. Thiede, “Luminescence and related optical properties of iron ions in II–VI compounds,” J. Lumin., Vol. 31-32, pp. 409-411, 1984.
[13] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin., Vol. 99, pp. 149-154, 2002.
[14] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7990, 1996.
[15] Chr. Weissmantel, O. Fiedler, G. Hecht and G. Reisse, “Ion beam sputtering and its application for the deposition of semiconducting films,” Thin Solid Films, Vol. 13, pp. 359-366, 1972.
[16] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[17] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,” Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
[18] S. B. Krupanidhi, H. Hu and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[19] C. C. Lee, J. C. Hsu, D. T. Wei and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[20] T. Tsurumi, S. Nishizawa, N. Ohashi and T. Ohgaki, “Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation,” Jpn. J. Appl. Phys., Vol. 38, pp. 3682-3688, 1999.
[21] C. C. Lee, J. C. Hsu and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., Vol. 171, pp. 151-156, 2001.
[22] K. Badeker, “Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds,” Ann. Phys., Vol. 22, pp. 749, 1907.
[23] K. L. Chopra, S. Major and D. K. Pandaya, “Transparent conductors—a status review, ” Thin Solid Films, Vol. 102, pp.1-46, 1983.
[24] 潘漢昌、蕭銘華、蘇健穎、蕭健男,透明導電膜簡介,科儀新知,第二十六卷,第一期,第46-55頁 (2004).
[25] 陳建華,「P-型透明導電膜應用於有機發光二極體」,碩士論文,國立成功大學化學工程研究所(2003).
[26] 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料,第一百七十九卷,第134-144頁(1999).
[27] T. Minami, H. Sato, H. Nanto and S. Takata, “Group Ⅲ imputity doped zinc oxide thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys., Vol. 24, pp. L781-L784,1985.
[28] K. H. Kim, K. C. Park and Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., Vol. 81, pp. 7764-7772, 1997.
[29] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, “Band-gap tailoring of ZnO by means of heavy doping,” Phys. Rev. B, Vol. 37, pp. 10244-10248, 1987.
[30] E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., Vol. 93, pp. 632-633, 1954.
[31] Y. Kim, W. Lee, D. R. Jung, J. Kim, S. Nam, H. Kim and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett., Vol. 96, pp. 171902-1-171902-3, 2010.
[32] J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mat. Res. Bull., Vol. 5, pp. 721-730, 1970.
[33] H. J. Kim, J. W. Bae, J. S. Kim, K.S. Kim, Y. C. Jang, G. Y. Yeom and N. E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, Vol. 377-378, pp. 115-121, 2000.
[34] S. Fujihara, Y. Ogawa and A. Kasai, “Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing,” Chem. Mater., Vol. 16, pp. 2965-2968, 2004.
[35] Y. F. Chena, H. J. Ko, S. K. Hong, K. Inaba, Y. Segawa and T. Yao, “Plasma-assisted molecular beam epitaxy of ZnO thin films on sapphire substrates with an MgO buffer,” J. Cryst. Growth, Vol. 227-228, pp. 917-922, 2001.
[36] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., Vol. 11, pp. 666-670, 1974.
[37] X. Wang, T. Yang, G. Du, H. Liang, Y. Chang, W. Liu and Y. Xu, “Preparation and study of stoichiometric ZnO by MOCVD technique,” J. Cryst. Growth, Vol. 285, pp. 521-526, 2005.
[38] E. De la Rosa, S. Sepu ´ lveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo and M. Jose Yacaman, “Controlling the growth amd luminescence properties of well-faceted ZnO nanorods,” J. Phys. Chem. C, Vol. 111, pp. 8489-8495, 2007.
[39] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci., Vol. 158, pp. 134-140, 2000.
[40] T. Szörényi, L.D. Laude, I. Bertóti, Z. Kántor and Zs. Geretovszky, “Excimer laser processing of indium-tin-oxide films: An optical investigation,” J. Appl. Phys., Vol. 78, pp. 6211-6219, 1995.
[41] J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys., Vol. 48, pp. 3524-3531, 1977.

QR CODE