簡易檢索 / 詳目顯示

研究生: 葉思吟
Ssu-Yin Yeh
論文名稱: 應用WSQA學習策略與教育機器人於國小數學學習扶助
Application of WSQA Learning Strategy and Educational Robot in Elementary Mathematics Remedial Teaching
指導教授: 陳素芬
Sufen Chen
口試委員: 王嘉瑜
Chia-Yu Wang
林志鴻
Jr-Hung Lin
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 學習扶助教育機器人WSQA學習策略後設認知自我效能
外文關鍵詞: Remedial teaching, Educational robot, WSQA learning strategy, Metacognition, Self-efficacy
相關次數: 點閱:585下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討WSQA(Watch, Summary, Question, Assessment)策略融入教育機器人教學對於國小數學學習扶助學童的學習成效、自我效能與後設認知之影響。為了瞭解此教學模式之成效,以臺灣中部兩所學校進行實驗課程,研究對象皆為四年級學習扶助學童,共15 名。學生在自主學習期間使用WSQA 學習單與自我檢核清單進行教育機器人之學習課程,實驗時間為十節課,每節40 分鐘。本研究採用混合式研究設計,課程內容以教育機器人(故事情境影片、互動學習、課後測驗)為數位學習工具,搭配WSQA 學習單讓學生自主學習,並使用自我觀察與檢核清單,引導學生在活動中規劃、監控,以及反思自己的表現,進而培養學生的後設認知。透過「半結構式訪談內容」等質性分析,另對學生的課堂行為進行滯後序列分析,並且輔以「數位工具滿意量表」、「自我效能量表」和「後設認知量表」等量化分析。
    本研究依據結果彙整出以下結論:(一)經過WSQA 學習策略的教育機器人課程後,學生的自我效能和後設認知有顯著提升。(二)經過WSQA 學習策略的教育機器人課程後,學生的學習成效雖未達顯著提升,但多數學生表示在實驗課程教學後,學習動機與成效有正向提升。(三)由整體滯後序列分析發現WSQA學習策略的教育機器人課程能夠培養學生的後設認知能力。


    This study used the WSQA (watch, summary, question, and assessment) learning strategy and educational robot to understand the impact of students’ mathematics learning achievement, motivation, and metacognition. The participants were 15 remedial students in the fourth grade from two public elementary schools in Taiwan. The study used a mixed research design and involved ten lessons. Each lesson lasted about 40 minutes. The curriculum used an education robot as digital learning tool and WSQA worksheets for students to learn independently. Students had checklists to guide them to monitor their performance. The qualitative analyses included interview and classroom video data, and quantitative analyses performed single-group pre- and post-tests, including self-efficacy scales and metacognitive scales. This study draws the following conclusions: After implementation of the WSQA learning strategy and educational robot, (1) the participants’ self-efficacy and metacognition have been significantly increased, (2) most students said that their learning motivation and achievement have been positively improved, and (3) the lag sequence analysis showed improvement of students' metacognitive ability.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究問題 5 第四節 名詞解釋 6 第五節 研究限制 7 第貳章 文獻探討 8 第一節 數學學習扶助相關研究 8 第二節 後設認知 11 第三節 WSQA學習策略 15 第參章 研究方法 17 第一節 研究設計 18 第二節 研究流程 19 第三節 研究對象 21 第四節 研究工具 24 第五節 資料分析 40 第肆章 研究結果與討論 48 第一節 自我效能與後設認知之描述性統計與無母數分析 48 第二節 應用WSQA學習策略於教育機器人教學模式之滿意度對自我效能與後設認知之間的關聯性 51 第三節 學習成效分析 52 第四節 後設認知能力編碼分析 57 第伍章 結論與建議討論 77 第一節 結論 77 第二節 建議 80 參考文獻 82 附錄一 研究同意書 92 附錄二 自我觀察與檢核清單 93 附錄三 自我效能量表 95 附錄四 後設認知量表 96 附錄五 數位工具滿意量表 98

    一、中文文獻
    均一教育平台(2018)。均一教育平台五週年特刊。均一平台教育基金會。https://official.junyiacademy.org
    林倖如(1991)。後設認知策略教學活動設計舉例。資優教育季刊,198,33。
    教育部(2012)。教育部國民及學前教育署補助辦理國民小學及國民中學學生學習扶助作業要點。教育部國民及學前教育署。https://edu.law.moe.gov.tw
    教育部(2020)。科技輔助自主學習推動計畫。https://srl.ntue.edu.tw/index.html
    陸偉明,黃慧菁,董旭英,黃郁茹,曾明騰,高實玫 & 黃秋華(2020)。補救教學-理論與應用(Vol. 41334)。心理出版社。
    黃源河,陳瑋婷(2016)。認知-後設認知策略在國中小學習障礙學生的數學補救教學成效。臺灣教育評論月刊,5(11),65-70。
    測驗統計與適性學習研究中心(2020)。109年度縣市學生學習能力檢測:數學三年級施測結果報告。國立臺中教育大學。

    二、英文文獻
    Afzal, H.,Ali, I., Aslam Khan, M., & Hamid, K. (2010). A study of university students’ motivation and its relationship with their academic performance. International Journal of Business and Management, 5(4), 80-88. http://dx.doi.org/10.2139/ssrn.
    2899435
    Ancliff, M., & Kang, A. (2017). Flipping an EMI physics class: Implications of student motivation and learning strategies for the design of course contents. International Journal of Contents,13(4), 1-11. https://doi.org/10.5392/IJoC.2017.13.4.001
    Brown, S. I., & Walter, M. I. (1993). Problem posing: Reflections and applications. Psychology Press, Lawrence Erlbaum Associates, Hillsdale, New Jersey : Lawrence Erlbaum Associates, 16-27.
    Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417-444.
    Case, L. P., & Harris, K. R. (1988). Self-instructional strategy training: Improving the mathematical problem solving skills of learning disabled students. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
    Choi, H. J., & Johnson, S. D. (2005). The effect of context-based video instruction on learning and motivation in online courses. The American Journal of Distance Education, 19(4), 215-227. https://doi.org/10.1207/s15389286ajde1904_3
    Cho, M. H., & Heron, M. L. (2015). Self-regulated learning: The role of motivation, emotion, and use of learning strategies in students’ learning experiences in a self-paced online mathematics course. Distance Education, 36(1), 80-99. https://doi.org/10.1080/01587919.2015.1019963
    Chiu, M. M., & Klassen, R. M. (2010). Relations of mathematics self-concept and its calibration with mathematics achievement: Cultural differences among fifteen-year-olds in 34 countries. Learning and Instruction, 20(1), 2-17. https://doi.org/10.1016/j.learninstruc.2008.11.002
    Chang, C. Y., Chung, M. H., & Yang, J. C. (2021). Facilitating nursing students' skill training in distance education via online game-based learning with the watch-summarize-question approach during the COVID-19 pandemic: A quasi-experimental study. Nurse Education Today, 109, 105256. https://doi.org/10.1016/j.nedt.2021.105256
    Dignath, C., & Büttner, G. (2008). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3(3), 231-264. https://doi.org/10.1007/
    s11409-008-9029-x
    Dignath, C., Buettner, G., & Langfeldt, H. P. (2008). How can primary school students learn self-regulated learning strategies most effectively?: A meta-analysis on self-regulation training programmes. Educational Research Review, 3(2), 101-129. https://doi.org/10.1016/j.edurev.2008.02.003
    Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years?. Frontiers in Psychology, 7, 508. https://doi.org/10.3389/fpsyg.2016.00508
    Du Toit, S., & Kotze, G. (2009). Metacognitive strategies in the teaching and learning of mathematics. Pythagoras, 2009(70), 57-67.
    Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906-911. https://doi.org/
    10.1037/0003-066X.34.10.906
    Flavell, J. H. (1987). Speculations about the nature and development of metacognition. Metacognition, Motivation and Understanding, 21-29.
    Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176. https://doi.org/10.5951/jresematheduc.16.3.0163
    García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11(2), 139-170. https://doi.org/10.1007/s11409-015-9139-1
    Hannula, M. S., Maijala, H., & Pehkonen, E. (2004). Development of Understanding and Self-Confidence in Mathematics; Grades 5-8. International Group for the Psychology of Mathematics Education, 3, 17-24.
    Heo, H. J., & Chun, B. A. (2016). A study on the effects of mobile-based LMS on flipped learning: Focused on the affective pathway in pre-service teacher education. International Journal of Software Engineering and Its Applications, 10(12), 473-484. http://dx.doi.org/10.14257/ijsela.2016.10.12.39
    Huang, X., Zhang, J., & Hudson, L. (2019). Impact of math self-efficacy, math anxiety, and growth mindset on math and science career interest for middle school students: the gender moderating effect. European Journal of Psychology of Education, 34(3), 621-640. https://doi.org/10.1007/s10212-018-0403-z
    Hsia, L. H., Hwang, G. J., & Lin, C. J. (2022). A WSQ-based flipped learning approach to improving students’ dance performance through reflection and effort promotion. Interactive Learning Environments, 30(2), 229-244. https://doi.org/10.1080/1049
    4820.2019.1651744
    Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013), A concept map-embedded educational computer game for improving students’ learning performance in natural science courses, Computers & Education, 69, 121-130. https://doi.org/10.1016/j.compedu.
    2013.07.008
    Jansen, B. R., Louwerse, J., Straatemeier, M., Van der Ven, S. H., Klinkenberg, S., & Van der Maas, H. L. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190-197. https://doi.org/10.1016/j.lindif.2012.12.014
    Karakonstantaki, E. S., Simos, P. G., Michalis, V., & Micheloyannis, S. (2018). Assessment and conceptual remediation of basic calculation skills in elementary school students. British Journal of Developmental Psychology, 36(1), 78-97. https://doi.org/10.1111/bjdp.12214
    Kesici, Ş., & Erdogan, A. (2009). Predicting College Students’ mathematics anxiety by motivational beliefs and self-regulated learning strategies. College Student Journal, 43(2), 631-642.
    Kim, C., Park, S. W., & Cozart, J. (2014). Affective and motivational factors of learning in online mathematics courses. British Journal of Educational Technology, 45(1), 171-185. https://doi.org/10.1111/j.1467-8535.2012.01382.x
    Kirch, C. (2012). Flipping with Kirch: the ups and downs from inside my flipped classroom. New Berlin WI: Bretzmann Group.
    Konijn, E. A., & Hoorn, J. F. (2020). Robot tutor and pupils’ educational ability: Teaching the times tables. Computers & Education, 157, 103970. https://doi.org/
    10.1016/j.compedu.2020.103970
    Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32(5), 448-470. https://doi.org/10.2307/749801
    Lai, C. L., & Hwang, G. J. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Computers & Education, 100, 126-140. https://doi.org/10.1016/j.compedu.2016.05.006
    Lai, C. L., & Hwang, G. J. (2021). Strategies for enhancing self-regulation in e-learning: a review of selected journal publications from 2010 to 2020. Interactive Learning Environments, 1-23. https://doi.org/10.1080/10494820.2021.1943455
    Li, L. Y., Chang, C. W., & Chen, G. D. (2009, August). Researches on using robots in education. In International conference on technologies for e-learning and digital entertainment (pp. 479-482). Springer, Berlin, Heidelberg. https://doi.org/10.100
    7/978-3-642-03364-3_57
    Lin, Y. C., Liu, T. C., Chang, M., & Yeh, S. P. (2009, August). Exploring children’s perceptions of the robots. In International Conference on Technologies for E-Learning and Digital Entertainment (pp. 512-517). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03364-3_63
    Little, M. E. (2009). Teaching mathematics: Issues and solutions. Teaching Exceptional Children Plus, 6(1), n1.
    Lin, H. C., Hwang, G. J., & Hsu, Y. D. (2019). Effects of ASQ-based flipped learning on nurse practitioner learners' nursing skills, learning achievement and learning perceptions. Computers & Education, 139, 207-221. https://doi.org/10.1016/j.com
    pedu.2019.05.014
    Lin, Y. N., Hsia, L. H., & Hwang, G. J. (2021). Promoting pre-class guidance and in-class reflection: A SQIRC-based mobile flipped learning approach to promoting students’ billiards skills, strategies, motivation and self-efficacy. Computers & Education, 160, 104035. https://doi.org/10.1016/j.compedu.2020.104035
    Liu, C., Wan, P., Tu, Y. F., Chen, K., & Wang, Y. (2021). A WSQ-based mobile peer assessment approach to enhancing university students’ vocal music skills and learning perceptions. Australasian Journal of Educational Technology, 37(6), 1-17. https://doi.org/10.14742/ajet.6832
    Mayer, R. E. (1992). Thinking, problem solving, cognition.(2nd ed.). WH Freeman, New York.
    Martinez, J. G., & Martinez, N. C. (1996). Math without fear: A guide for preventing math anxiety in children. Needham Heights, MA.
    Margaryan, A., Littlejohn, A., & Vojt, G. (2011). Are digital natives a myth or reality? University students’ use of digital technologies. Computers & education, 56(2), 429-440. https://doi.org/10.1016/j.compedu.2010.09.004
    Munzar, B., Muis, K. R., Denton, C. A., & Losenno, K. (2021). Elementary students’ cognitive and affective responses to impasses during mathematics problem solving. Journal of Educational Psychology, 113(1), 104-124. https://doi.org/10.1037/edu0
    000460
    Mullis, I. V., & Martin, M. O. (2017). TIMSS 2019 Assessment Frameworks. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, The Netherlands.
    Moos, D. C., & Azevedo, R. (2008). Self-regulated learning with hypermedia: The role of prior domain knowledge. Contemporary Educational Psychology, 33(2), 270-298. https://doi.org/10.1016/j.cedpsych.2007.03.001
    Nishimura, Y., Kushida, K., Dohi, H., Ishizuka, M., Takeuchi, J., Nakano, M., & Tsujino, H. (2007). Development of multimodal presentation markup language MPML-HR for humanoid robots and its psychological evaluation. International Journal of Humanoid Robotics, 4(01), 1-20. https://doi.org/10.1142/S0219843607000947
    Özkubat, U., & Özmen, E. R. (2021). Investigation of Effects of Cognitive Strategies and Metacognitive Functions on Mathematical Problem-Solving Performance of Students with or Without Learning Disabilities. International Electronic Journal of Elementary Education, 13(4), 443-456.
    Palincsar, A. S. (1986). Metacognitive strategy instruction. Exceptional Children, 53(2), 118-124. https://doi.org/10.1177/001440298605300203
    Peterson, R. A. (1994). A meta-analysis of Cronbach's coefficient alpha. Journal of Consumer Research, 21(2), 381-391. https://doi.org/10.1086/209405
    Peters, E. E., & Kitsantas, A. (2010). Self‐regulation of student epistemic thinking in science: The role of metacognitive prompts. Educational Psychology, 30(1), 27-52. https://doi.org/10.1080/01443410903353294
    Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40. https://doi.org/10.1037/0022-0663.82.1.33
    Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ), Educational and Psychological Measurement, 53(3), 801-813. https://doi.org/10.1177/0013164493053003024
    Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83-100. https://doi.org/10.1016/j.jecp.2015.07.014
    Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning Disabilities, 26(4), 214-226. https://doi.org/10.1177/002221949302600402
    Roick, J., & Ringeisen, T. (2018). Students' math performance in higher education: Examining the role of self-regulated learning and self-efficacy. Learning and Individual Differences, 65, 148-158. https://doi.org/10.1016/j.lindif.2018.05.018
    Santos, L., & Semana, S. (2015). Developing mathematics written communication through expository writing supported by assessment strategies. Educational studies in mathematics, 88(1), 65-87. https://doi.org/10.1007/s10649-014-9557-z
    Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1), 113-125. https://doi.org/10.1023/A:1003044231033
    Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM – Mathematics Education, 42(2), 149-161. https://doi.org/10.1007/s11858-010-0240-2
    Schleicher, A. (2019). PISA 2018: Insights and Interpretations. OECD Publishing. https://www.oecd.org/pisa/PISA%202018%20Insights%20and%20Interpretations%20FINAL%20PDF.pdf
    Sieber, S. D. (1973). The integration of fieldwork and survey methods. American journal of sociology, 78(6), 1335-1359.
    Soliman, N. A. (2016). Teaching English for academic purposes via the flipped learning approach. Procedia-Social and Behavioral Sciences, 232, 122-129. https://doi.org/10.1016/j.sbspro.2016.10.036
    Torrington, J., & Bower, M. (2021). Teacher‐created video instruction in the elementary classroom—Its impact on students and teachers. Journal of Computer Assisted Learning, 37(4), 1107-1126. https://doi.org/10.1111/jcal.12549
    Trigueros, R., Aguilar-Parra, J. M., Lopez-Liria, R., Cangas, A. J., González, J. J., & Álvarez, J. F. (2020). The Role of Perception of Support in the Classroom on the Students’ Motivation and Emotions: The Impact on Metacognition Strategies and Academic Performance in Math and English Classes. Frontiers in Psychology, 10, 2794. https://doi.org/10.3389/fpsyg.2019.02794
    Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122. https://doi.org/10.1016/j.compedu.2014.10.002
    Walberg, H. J., & Paik, S. J. (2000). Effective educational practices. International Academy of Education . Geneva, Switzerland.
    Weeraratne, B., & Chin, B. (2018). Can Khan Academy e-Learning Video Tutorials Improve Mathematics Achievement in Sri Lanka?. International Journal of Education and Development using Information and Communication Technology, 14(3), 93-112.
    Yang, D. C., Lai, M. L., Yao, R. F., & Huang, Y. C. (2014). Effects of Remedial Instruction on Low-SES & Low-Math Students' Mathematics Competence, Interest and Confidence. Journal of Education and Learning, 3(1), 1-15.
    Zimmerman, B. J., & Martinez-Pons, M. (1988). Construct validation of a strategy model of student self-regulated learning. Journal of Educational Psychology, 80(3), 284-290. https://doi.org/10.1037/0022-0663.80.3.284
    Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2

    QR CODE