簡易檢索 / 詳目顯示

研究生: 劉聿康
Yu-Kang Liu
論文名稱: 金屬玻璃鍍層應用於料理用刀具之抗沾黏及疏油性質提升研究
Beneficial Effects of Thin Film Metallic Glass on Non-stick and Oleophobic properties of the Knife
指導教授: 朱瑾
Jinn Chu
口試委員: 朱瑾
Jinn Chu
白孟宜
Meng-Yi Bai
黃錦前
Jin-Cian Huang
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 146
中文關鍵詞: 金屬玻璃鍍層料理用刀具抗沾黏性質疏油性質
外文關鍵詞: Thin film metallic glasses, Knife, Non-stick property, Oleophobic property
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

每位刀具使用者,不論是專業廚師與否,或多或少都會遇到切食材的過程中,食材黏在刀具上,需要停止動作,將食材從刀具上去除的不便經驗,且不同食材沾黏在刀具上方,會造成食材的相互污染,因此,本研究將利用具有獨特非晶結構及諸多優良特性的金屬玻璃鍍層,改善食材沾黏刀具之情況。
首先,大約200奈米的鋯基金屬玻璃鍍層(Zr60Cu25Al10Ni5)會由磁控濺鍍系統均勻鍍在市面上的刀具表面上,接下來進行一系列的測試。
微結構觀察中,鍍膜後及鍍膜前刀具沒有明顯的不同,在電子顯微鏡影像中,刀具加工痕跡非常明顯,粗糙度測試與也觀察不出明顯的變化,大多只是每把刀具間的個別差異。
我們利用接觸角測量儀觀察鍍層之疏油性,藉由傾斜接觸角測量儀之傾斜載台,魚油會開始滑動,而傾斜的角度越小代表魚油在表面上受的阻力較小,可以較輕易地滑動,疏油性因此較好。具有金屬玻璃鍍層之刀具平均滑動角度為16.2˚,相較於具純鈦鍍層20.3˚,及未鍍膜刀具31.6˚,皆可看出差異。因此,可得知,金屬玻璃鍍層及純鈦鍍層皆有相對好的疏油性,尤其以具金屬玻璃鍍層之刀具效果最佳。
於沾黏測試中,我們用刀具切鮭魚肉,並利用染色方法,觀察切割過程中,經拉扯後殘留在刀具上的組織多寡。具金屬玻璃鍍層之刀具刀具沾黏之平均面積相較於未鍍膜刀具,減少了大約90%,而具純鈦鍍層之刀具也大約減少了75%。由此可推斷,在切割過程中,具金屬玻璃及純鈦鍍層之刀具與鮭魚組織的拉扯力較小,因此殘留於刀具上被拉扯下來的組織相對少於未鍍膜刀具,尤其以具金屬玻璃鍍層之刀具效果最佳。
切割測試中,刀具在拔出豬肉的過程中,未鍍膜刀具明顯地將豬肉一併拉起,但具有鋯基金屬玻璃鍍層之刀具平順的從豬肉中拔出,沒有明顯豬肉黏附的現象且藉由放大施力及位移曲線,可明顯看出具鋯基金屬玻璃鍍層之刀具在切割過程中相對穩定。


Every user of the knife might have some unpleasant experiences while using the knife because the food sticks on the knife. To eliminate this situation, a layer of 200 nm-thick Zr-based (Zr60Cu25Al10Ni5) Thin film metallic glass (TFMG) which has been reported possessing some advantages is deposited on the surface of the commercial knife, aiming to improve the anti-sticking property of the knife.
Magnetron sputtering system is used in this study for the deposition of Zr-based (Zr60Cu25Al10Ni5) TFMG. After the TFMG coating is deposited on the knife surface, a series of experiments are performed.
No obvious difference can be found under scanning electron microscope. The machining marks made during the manufactural process aligned vertically on the knife surface. The surface roughness also shows no obvious differences.
Contact angle meter is used to obtain the sliding angle. The stage of the contact angle meter is tilted until the fish oil droplet begins to slide, at which the tilt angle is defined as the sliding angle. The smaller the sliding angle is, the easier the droplet can move on the surface, and the better the oil-repellent ability is. The results show that the average sliding angle of the TFMG-coated knife is 16.2˚, the Ti-coated knife is 20.3˚ and the bare knife is 31.6˚. It indicates that both of TFMG and the Ti-coated knives can efficiently reduce the sliding angle. In the other words, both of the coatings can improve the oil-repellent ability of the knife, with the best performance achieved by TFMG.
In the cell attached test, the knife is used to cut the salmon fish, followed by the staining process in order to observe the amount of tissue which are left and attached onto the knife surface. Comparing with the bare knife, the cell-attached area of the TFMG-coated knife decrease around 90%, and the Ti-coated knife also decrease around 75%. It is because of the low coefficient of friction (CoF) and surface free energy of the TFMG coating, which yield less salmon residual attached to the coated surface than Ti-coated and bare knives.
In the cutting test, the sticking condition of TFMG-coated knife to the pork is noticeably reduced than the bare knife. It is shown the pork muscle stick obviously on the bare knife in retraction step while the pork muscle remain flat as the TFMG-coated knife be pulled up. The less stick-slip motions are also found while cutting the PU rubber with Zr-based TFMG-coated knife.

Contents 摘要 I Abstract III Acknowledgement V Contents VII List of Tables XI List of Figures XIII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Wettability 3 2.1.1 Ideal Solid Surface and Non-Ideal Solid Surface 3 2.1.2 Surface Tension and Contact Angle 9 2.1.3 Cell Adhesion 11 2.1.4 Oil-repellent Ability 14 2.1.5 Non-stick Coating 17 2.2 Cookware - Knife 19 2.2.1 Introduction to Knives 19 2.2.2 Manufactural Procedure of Knives 20 2.2.3 Different Kinds of Knives 22 2.2.4 Non-stick Surfaces of Commercial Knives 23 2.3 Metallic Glasses (MGs) 24 2.3.1 Characteristics of MGs 24 2.3.1.1 Supercooled Liquid Region (SCLR) 24 2.3.1.2 Free Volume in MGs 25 2.3.2 Bulk Metallic Glasses (BMGs) 25 2.3.3 Thin Film Metallic Glasses (TFMGs) 26 2.3.3.1 Low Coefficient of Friction (CoF) of TFMGs 27 2.3.3.2 Antibacterial Property of TFMG 29 2.3.3.3 Sharpness and Durability Improvement 31 2.4 Physical Vapor Deposition - Sputtering 32 2.5 Objectives of Study 34 Chapter 3 Experimental Procedure 35 3.1 Sample Preparation 36 3.1.1 Blade Separation 36 3.1.2 Polishing and Grinding of AISI-314 Stainless Steel Plates 36 3.1.3 Substrate Cleaning 37 3.1.4 Thin Film Metallic Glass (TFMG) Deposition 37 3.2 Material Characterizations 38 3.2.1 Microstructural Analysis & Elemental Composition Analysis 38 3.2.2 Crystallographic Analysis 39 3.2.3 Thermal Analysis 39 3.2.4 Surface Roughness Analysis 39 3.2.5 Nanoindentation Test 40 3.3 Oil-repellent Test 40 3.4 Cell Adhesion Test 41 3.5 Cutting Test 42 3.6 Calculations of the statistical results – p-value 43 Chapter 4 Results and Discussion 45 4.1 Thin Film Characterizations 45 4.1.1 Crystallographic Analyses 45 4.1.2 Thermal Analyses 46 4.1.3 Elemental Composition Analyses 48 4.2 Microstructural Analyses 49 4.2.1 Surface Morphology Observation of Bare and Surface-Treated Samples 49 4.2.1.1 Knives 49 4.2.1.2 AISI-314 Stainless Steel Plates 54 4.2.2 Surface Roughness Investigation 54 4.2.2.1 Knives 54 4.2.2.1.1 Cutting Edge Part 54 4.2.2.1.2 Blade Surface Part 55 4.2.2.2 AISI-314 Stainless Steel Plates 58 4.3 Nanoindentation Behavior of Bare and Surface-treated Samples 60 4.4 Fish oil-repellent Ability of Bare and Surface-treated Samples 61 4.4.1 Fish-Oil-repellent Ability of Bare and Surface-treated Knives 61 4.4.2 Results of Fish-Oil-repellent Ability of Bare and Surface-treated AISI-314 Stainless Steel Plates 65 4.4.3 Various Factors Influencing Fish-Oil-repellent Ability of Bare and Surface-treated Knives 72 4.5 Cell Adhesion Ability on Bare and Surface-treated Knives 76 4.5.1 Results of the Cell Adhesion Ability on Bare and Surface-treated Knives 76 4.5.2 Various Factors Influencing Cell Adhesion Ability on Bare and Surface-treated Knives 77 4.6 Cutting Test against PU Rubber and Pork 85 4.6.1 Results of Cutting Test 85 4.6.2 Various Factors Influencing the Non-stick Property of Bare and Zr-based TFMG-coated Knife 92 Chapter 5 Conclusions and Future Works 95 5.1 Conclusions 95 5.2 Future Works 96 References 97 Appendix 99 Appendix 1: Overall cell-attached area images of Zr-based TFMG-coated knife. 99 Appendix 2: Overall cell-attached area images of Ti-coated knife. 109 Appendix 3: Overall cell-attached area images of bare knife. 119

References
[1] Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, in: G. Bracco, B. Holst (Eds.) Surface Science Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, 3-34.
[2] A. Marmur, Langmuir, 19 (2003) 8343-8348.
[3] I.P. Parkin, R.G. Palgrave, Journal of Materials Chemistry, 15 (2005) 1689-1695.
[4] C. Neinhuis, W. Barthlott, Annals of Botany, 79 (1997) 667-677.
[5] J. Bico, C. Marzolin, D. Quéré, Europhysics Letters, 47 (1999) 220.
[6] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, The Journal of Physical Chemistry, 100 (1996) 19512-19517.
[7] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Öner, J. Youngblood, T.J. McCarthy, Langmuir, 15 (1999) 3395-3399.
[8] S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, The Journal of Physical Chemistry B, 104 (2000) 8836-8840.
[9] K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano Letters, 3 (2003) 1701-1705.
[10] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Langmuir, 24 (2008) 4114-4119.
[11] A. Lafuma, D. Quéré, Nature Materials, 2 (2003) 457.
[12] Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 180 (1942) 151.
[13] D.P. Dowling, K. Donnelly, M.L. McConnell, R. Eloy, M.N. Arnaud, Thin Solid Films, 398-399 (2001) 602-606.
[14] C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Surface and Coatings Technology, 344 (2018) 312-321.
[15] M. Kiuru, E. Alakoski, Materials Letters, 58 (2004) 2213-2216.
[16] W. Tang, Y. Huang, W. Meng, F.-L. Qing, European Polymer Journal, 46 (2010) 506-518.
[17] M. Yu, G. Gu, W.-D. Meng, F.-L. Qing, Applied Surface Science, 253 (2007) 3669-3673.
[18] D. Wang, X. Wang, X. Liu, F. Zhou, The Journal of Physical Chemistry C, 114 (2010) 9938-9944.
[19] L. Yu, G.Y. Chen, H. Xu, X. Liu, ACS Nano, 10 (2016) 1076-1085.
[20] J.P. Chu, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.-L. Shen, Scientific Reports, 6 (2016) 31847.
[21] W. Klement, R.H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
[22] A.L. Greer, Science, 267 (1995) 1947-1953.
[23] D. Turnbull, M.H. Cohen, The Journal of Chemical Physics, 34 (1961) 120-125.
[24] D. Turnbull, M.H. Cohen, The Journal of Chemical Physics, 52 (1970) 3038-3041.
[25] H.S. Chen, Acta Metallurgica, 22 (1974) 1505-1511.
[26] A.L. Greer, Nature, 366 (1993) 303.
[27] M.M. Trexler, N.N. Thadhani, Progress in Materials Science, 55 (2010) 759-839.
[28] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 4067-4109.
[29] R.B. Schwarz, W.L. Johnson, Physical Review Letters, 51 (1983) 415-418.
[30] A. Inoue, Acta Materialia, 48 (2000) 279-306.
[31] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21 (2012) 105-114.
[32] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin Solid Films, 561 (2014) 2-27.
[33] P.-T. Chiang, G.-J. Chen, S.-R. Jian, Y.-H. Shih, J.S.-C. Jang, C.-H. Lai, Fooyin Journal of Health Sciences, 2 (2010) 12-20.
[34] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S.C. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Thin Solid Films, 561 (2014) 102-107.
[35] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics, 31 (2012) 127-131.
[36] C.T. McCarthy, M. Hussey, M.D. Gilchrist, Engineering Fracture Mechanics, 74 (2007) 2205-2224.
[37] J.S.-C. Jang, P.-H. Tsai, A.-Z. Shiao, T.-H. Li, C.-Y. Chen, J.P. Chu, J.-G. Duh, M.-J. Chen, S.-H. Chang, W.-C. Huang, Intermetallics, 65 (2015) 56-60.
[38] Y.C. Jung, B. Bhushan, Langmuir, 25 (2009) 14165-14173.
[39] R. Mishra, B. Basu, R. Balasubramaniam, Materials Science and Engineering: A, 373 (2004) 370-373.
[40] E. Ahmed, C.-M. Carol, G. Tijani, H. Philippe, Skin Research and Technology, 10 (2004) 215-221.

無法下載圖示 全文公開日期 2023/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE