簡易檢索 / 詳目顯示

研究生: 范俊哲
Chun-chieh Fan
論文名稱: 利用化學接枝法接枝聚乙二醇甲醚於假牙基底層以提升抗沾黏性質
Incorporation of anti-fouling properties on denture base materials by chemical grafting methods
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 葉昀昇
Yun-sheng Ye
劉懷勝
Hwai-shen Liu
王德華
Tak-wah Wong
廖文堅
Wen-chien Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 83
中文關鍵詞: 抗沾黏酯化反應點擊化學反應
外文關鍵詞: antifouling, esterification reaction, click chemistry reaction
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 活動義齒基底材料常見的問題有二 (1)材料與軟內襯之間黏著力不足;(2) 口腔微生物在材料表面的生長。本研究利用聚甲基丙烯酸甲酯 (polymethyl methacrylate, PMMA) 熱固式假牙基底層 (Luctione 199) 以及矽橡膠 (silicone rubber) 基底的熱聚式軟內襯 (Molloplast B) 為實驗材料。
    本研究利用兩種接枝方法:酯化反應 (esterification reaction)以及點擊化學反應 (click chemistry reaction) 接枝聚乙二醇甲醚 (mPEG) 於假牙基底層材料 (PMMA),以改變表面性質。其中兩種接枝方法,皆需改質聚乙二醇甲醚高分子末端官能基,而假牙基底材料也需修飾具有對應之官能基,以便進行接枝。聚乙二醇甲醚與聚乙二醇分子結構相似,但是僅有一端具有羥基官能基,因此能有效進行專一性的接枝,本研究將聚乙二醇甲醚接枝於假牙基底材料表面上,則是利用聚乙二醇甲醚在液相中型態會由捲曲密集伸展開形成梳狀狀結構,並且其水濕性會隨時間的增加而提高之性質,降低蛋白質或細胞之貼附。聚乙二醇甲醚的末端基改質前後用傅立葉轉換紅外光譜儀 (FTIR) 觀察官能基之變化,用液態核磁共振儀 (1H NMR) 鑑定聚乙二醇甲醚末端基改質是否成功。高分子接枝於假牙基底層表面後,利用電子能譜化學分析儀 (ESCA) 分析材料表面的化學鍵結,以及以掃瞄式電子顯微鏡 (SEM) 觀察表面型態之變化。
    本研究所利用的兩種接枝的方法進行假牙基底層之改質皆能提高抗沾黏效率,首先,是利用酯化反應將兩種分子量2000 g/mole及5000 g/mole的聚乙二醇甲醚接枝於假牙基底層上,抗沾黏效率分別達到39.8 %及36.5 %。其次,利用點擊化學方法將兩種分子量的聚乙二醇甲醚接枝於假牙基底層上,發現可達到較高之抗沾黏效率,分別為63.4 %及81.3 %。
    拉伸強度測試的結果,顯示利用不同的接枝方法接枝不同分子量的聚乙二醇甲醚,對於假牙基底層拉伸強度均有影響,其中利用酯化反應的方法接枝分子量2000 g/mole的聚乙二醇甲醚會與未改質之假牙基底層結果皆於軟內襯造成斷裂,因其表面與軟內襯具有較強的黏著力,而實驗可知軟內襯可承受1.2 MPa的拉伸強度,並可推得黏著力與未改質的假牙基底層相近。而接枝分子量5000 g/mole表面與軟內襯黏著力較低約為0.70 MPa,其拉伸結果於黏著面造成分離。利用點擊化學方法,接枝分子量2000 g/mole與5000 g/mole聚乙二醇甲醚,其表面與軟內襯黏著力皆較低,分別為0.6 MPa及0.3 MPa,其拉伸結果會於黏著面造成分離。


    The common problems encountered for dentures include: (i) the loss of adhesion between soft linings and denture base, and (ii) the growth of microorganism and formation of biofilm on the denture which usually resulted in bad smelling and hygiene concerns. This study aims to incorporate antifouling molecules onto the denture base materials and to evaluate the variation of the adhesion between soft linings (Molloplast B) and denture bases (Luctione 199).
    Two chemical grafting methods were proposed in this study to incorporate mPEG (poly(ethylene glycol) methyl ether), a derivative of PEG (polyethylene glycol), on the denture base which is mainly composed of PMMA (polymethyl methacrylate). The first method involved to modify one end of mPEG from –OH group to –COOH by reacting with succinic anhydride (forming mPEG-COOH), and further reacted with thionyl chloride to form mPEG-COCl. PMMA denture base was reacted with LiAlH4 to form PMMA-OH that the highly reactive mPEG-COCl would react with PMMA-OH to specifically graft mPEG on PMMA and form mPEG-PMMA. In this part of studies, different solvents systems and two molecular weight of mPEG were used to study their effects on fouling resistance. The formed products were named as mPEG-2k-COCl-PMMA and mPEG-5k-COCl-PMMA.
    The second chemical graft method is to modify mPEG and PMMA both in two steps. PMMA was firstly reacted with LiAlH4 and propargyl bromide to form PMMA-OH and PMMA- alkyne, respectively. The –OH end group of mPEG was modified by thionyl chloride and sodium azide (NaN3) to form mPEG-Cl and mPEG-N3, sequentially. The alkyne-azide reaction between PMMA- alkyne and mPEG-N3 was specific and commonly called “click chemistry” reaction. Two different M.W. of mPEG were studied and the formed products were named as mPEG-2k-click-PMMA and mPEG-5k-click-PMMA.
    The mPEG incorporation is believed to provide the brush-like structure on the surface of PMMA to resist the adhesion of biomolecules. Moreover, the identification of chemical structure and synthesis were performed using FTIR, 1H NMR and ESCA. The surface morphology was visualized by SEM. The results showed that the two proposed methods increased the antifouling efficiency on the dental based materials. Firstly, the “esterification” reaction resulted in 39.8 % and 36.5 % for mPEG-2k-COCl-PMMA and mPEG-5k-COCl-PMMA. Furthermore, the “click chemistry” reaction promoted the antifouling efficiency up to 63.4 % and 81.3 % on mPEG-2k-click-PMMA and mPEG-5k-click-PMMA. The results of mechanical tests showed that the similar mechanical strength was obtained between soft lining and denture base on mPEG-2k-COCl-PMMA.The other three modifications resulted in slightly decreases of mechanical strength between the modified denture base and soft linings.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章、 緒論 1 1.1 研究背景 1 1.2 研究目標 1 第二章、 文獻回顧 3 2.1 假牙功能 3 2.2 假牙基底層簡介 4 2.3 抗沾黏性質 6 2.3.1 抗沾黏的定義 6 2.3.2 抗沾黏高分子 7 2.3.3 製備高分子梳狀 (polymer brushes) 結構 8 2.3.4 表面改質與抗沾黏測試 9 2.4 抗菌材料之相關研究 11 2.4.1 細菌性質之簡介 11 2.4.2 細菌與材料表面的交互作用 12 2.5 聚乙二醇的修飾 14 2.5.1 修飾方法 14 2.5.2 接枝mPEG於生醫材料表面 14 2.5.3 點擊化學 (Click reaction) 15 2.6 假牙基底層與軟內襯的黏著力探討 18 2.6.1 黏著力測試 18 2.6.2 黏著力計算公式 19 第三章、 實驗藥品、設備、原理及步驟 20 3.1 實驗藥品 20 3.2 實驗設備與器材 21 3.2.1 接觸角測量 (contact angle) 21 3.2.2 傅立葉轉換紅外光譜儀(Fourier transform infrared spectroscopy、FTIR)鑑定 21 3.2.3 X-射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 22 3.2.4 掃瞄式電子顯微鏡 (scanning electron microscopy) 22 3.2.5 液態核磁共振儀 (Solution Nuclear Magnetic Resonance、1H NMR) 22 3.2.6 減壓濃縮機 (Rotary Evaporators) 23 3.2.7 實驗器材 23 3.3 假牙材料製備之流程: 24 3.3.1 假牙基底材料製備 24 3.3.2 軟內襯材料製備 25 3.4 酯化反應接枝mPEG於假牙基底層: 26 3.4.1 假牙基底層的改質利用氫化鋰鋁還原甲基丙烯酸甲酯 (PMMA) 26 3.4.2 mPEG的改質 26 3.4.2.1 mPEG-COOH之合成 26 3.4.2.2 合成mPEG-COCl 27 3.4.2.3 mPEG-COCl接枝於假牙基底層 28 3.4.2.3.1 利用混合溶劑的進行酯化接枝反應 28 3.4.2.3.2 利用單一溶劑的進行酯化接枝反應 28 3.5 以點擊化學方法接枝mPEG於假牙基底層 30 3.5.1 利用氫化鋰鋁使甲基丙烯酸甲酯 (PMMA) 30 3.5.2 利用3-溴丙炔修飾經氫化鋰鋁還原的假牙基底層 30 3.5.3 聚乙二醇的改質並利用點擊接枝 31 3.5.3.1 合成mPEG-Cl 31 3.5.3.2 合成mPEG-N3 31 3.5.3.1 點擊化學反應 32 3.6 抗沾黏的測試 33 3.6.1 利用老鼠纖維母細胞 (L929) 測試 33 3.6.1.1 細胞培養 33 3.6.1.2 繼代培養 33 3.6.1.3 細胞種植 (cell seeding) 33 3.6.1.4 Lactate dehydrogenase assay, LDH assay 33 3.6.1.4.1 LDH實驗進行步驟 33 3.6.1.4.2 細胞培養液 34 3.6.1.4.3 LDH溶液 35 3.6.2 利用大腸桿菌測試 36 3.6.2.1 LB (Luria-Bertani) 培養液 36 3.6.2.2 番紅花 (safranine) 染色測試 36 3.7 軟內襯與假牙基底之黏著力測試 37 第四章、 結果與討論 39 4.1 利用酯化反應接枝聚乙二醇甲醚於假牙基底層表面 39 4.1.1 聚乙二醇甲醚醯氯化之合成與鑑定 39 4.1.1.1 FTIR分析 39 4.1.1.2 1H NMR分析聚乙二醇甲醚醯氯化反應 42 4.1.2 酯化反應接枝聚乙二醇甲醚於假牙基底層酯化的分析與測試 44 4.1.2.1 酯化接枝的ESCA分析 44 4.1.2.1.1 寬掃描的分析 44 4.1.2.1.2 高解析度C1s 特性峰的分析 47 4.1.2.2 酯化接枝的SEM表面分析 50 4.1.2.3 酯化接枝的接觸角量測 52 4.1.2.4 酯化接枝聚乙二醇甲醚於假牙基底層的細胞沾黏測試 53 4.1.2.4.1 選用混合溶劑進行接枝不同分子量的聚乙二醇甲醚 53 4.1.2.4.2 溶劑選用不同溶劑進行接枝比較抗沾黏效率 54 4.1.2.4.3 溶劑選用二甲基亞碸 (DMSO) 進行接枝不同分子量的聚乙二醇 55 4.1.2.5 酯化接枝於假牙基底層的細菌沾黏測試 56 4.1.2.6 酯化接枝後利用拉伸測試假牙基底層與軟內襯的黏著強度 57 4.2 利用點擊化學接枝聚乙二醇甲醚於假牙基底層 59 4.2.2.1 聚乙二醇甲醚疊氮官能基之合成與鑑定 59 4.2.1.1 FTIR分析 59 4.2.1.2 1H NMR分析聚乙二醇甲醚疊氮化反應 61 4.2.2.2 點擊化學接枝於假牙基底層的分析與測試 62 4.2.2.1 點擊化學之接枝的ESCA分析 62 4.2.2.1.1 寬掃描的分析 62 4.2.2.1.2 高解析度C1s 特性峰分析 64 4.2.2.2 點擊化學接枝的SEM表面分析 67 4.2.2.4 點擊化學接枝的細胞貼附量測試 70 4.2.2.5 點擊化學接枝的細菌沾黏測試 71 4.2.2.6 點擊化學後利用拉伸測試假牙基底層與軟內襯的黏著強度 72 第五章、 結論 74 5.1 聚乙二醇甲醚改質之鑑定 74 5.2 假牙基底層改質之鑑定 74 5.3 抗沾黏測試 74 5.4 假牙基底層與軟內襯黏著力之測試 75 第六章、 參考文獻 76

    [1] A.M.S H. The influence of humidity on the deformation and fracture behaviour of PMMA. Journal of Materials Processing Technology. 2002;124:238-43.
    [2] Ozdemir KG, Yılmaz H, Yılmaz S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;90B:82-6.
    [3] Kulak-Ozkan Y, Sertgoz A, Gedik H. Effect of thermocycling on tensile bond strength of six silicone-based, resilient denture liners. The Journal of Prosthetic Dentistry. 2003;89:303-10.
    [4] Polyzois GL, Frangou MJ. Influence of curing method, sealer, and water storage on the hardness of a soft lining material over time. Journal of Prosthodontics. 2001;10:42-5.
    [5] McCabe JF, Carrick TE, Kamohara H. Adhesive bond strength and compliance for denture soft lining materials. Biomaterials. 2002;23:1347-52.
    [6] Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of `high strength' denture base acrylic resins. Journal of Oral Rehabilitation. 2002;29:263-7.
    [7] Can G, Ozdemir T, Usanmaz A. Effect of thermocycling and treatment with monomer on mechanical properties of soft denture liner Molloplast B. International Journal of Adhesion and Adhesives. 2009;29:812-4.
    [8] Mese A, Guzel KG. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. The Journal of Prosthetic Dentistry. 2008;99:153-9.
    [9] Wang S, Hou W, Wei L, Jia H, Liu X, Xu B. Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surface and Coatings Technology. 2007;202:460-5.
    [10] Toiserkani H, Yilmaz G, Yagci Y, Torun L. Functionalization of polysulfones by click chemistry. Macromolecular Chemistry and Physics. 2010;211:2389-95.
    [11] Dalsin JL, Messersmith PB. Bioinspired antifouling polymers. Materials Today. 2005;8:38-46.
    [12] Ratner BD. The blood compatibility catastrophe. Journal of Biomedical Materials Research. 1993;27:283-7.
    [13] Wisniewski N, Reichert M. Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces. 2000;18:197-219.
    [14] James D B. Biofilms and the technological implications of microbial cell adhesion. Colloids and Surfaces B: Biointerfaces. 1994;2:9-23.
    [15] Park JY, Acar MH, Akthakul A, Kuhlman W, Mayes AM. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials. 2006;27:856-65.
    [16] Chen H, Hu X, Zhang Y, Li D, Wu Z, Zhang T. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloids and Surfaces B: Biointerfaces. 2008;61:237-43.
    [17] Chang Y, Ko C-Y, Shih Y-J, Quemener D, Deratani A, Wei T-C, Wang D-M, Lai J-Y. Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science. 2009;345:160-9.
    [18] Yilmaz G, Toiserkani H, Demirkol DO, Sakarya S, Timur S, Torun L, Yagci Y. Polysulfone based amphiphilic graft copolymers by click chemistry as bioinert membranes. Materials Science and Engineering: C. 2011;31:1091-7.
    [19] Park B-D, Lee Y-S. The effect of PEG groups on swelling properties of PEG-grafted-polystyrene resins in various solvents. Reactive and Functional Polymers. 2000;44:41-6.
    [20] Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM. Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells. Langmuir. 2001;17:6336-43.
    [21] Wang Y-X, Robertson JL, Spillman WB, Claus RO. Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility. Pharmaceutical Research. 2004;21:1362-73.
    [22] Zhang SF, Rolfe P, Wright G, Lian W, Milling AJ, Tanaka S, Ishihara K. Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomaterials. 1998;19:691-700.
    [23] Magin CM, Cooper SP, Brennan AB. Non-toxic antifouling strategies. Materials Today. 2010;13:36-44.
    [24] Chen S, Li L, Zhao C, Zheng J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283-93.
    [25] Sharma S, Johnson RW, Desai TA. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors and Bioelectronics. 2004;20:227-39.
    [26] Zhang Z, Chao T, Chen S, Jiang S. Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir. 2006;22:10072-7.
    [27] Yang H, Li L, Wan L, Zhou Z, Yang S. Synthesis of water soluble PEG-functionalized iridium complex via click chemistry and application for cellular bioimaging. Inorganic Chemistry Communications. 2010;13:1387-90.
    [28] Zdyrko B, Klep V, Li X, Kang Q, Minko S, Wen X, Luzinov I. Polymer brushes as active nanolayers for tunable bacteria adhesion. Materials Science and Engineering: C. 2009;29:680-4.
    [29] Chen T, Ferris R, Zhang J, Ducker R, Zauscher S. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Progress in Polymer Science. 2010;35:94-112.
    [30] Li J, Tan D, Zhang X, Tan H, Ding M, Wan C, Fu Q. Preparation and characterization of nonfouling polymer brushes on poly(ethylene terephthalate) film surfaces. Colloids and Surfaces B: Biointerfaces. 2010;78:343-50.
    [31] Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends in Microbiology. 2001;9:327-35.
    [32] Park SE, Periathamby AR, Loza JC. Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans1. Journal of Prosthodontics. 2003;12:249-54.
    [33] Morgan TD, Wilson M. The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor. Journal of Applied Microbiology. 2001;91:47-53.
    [34] Yildirim MS, HasanreİSoǦLu U, Hasirci N, Sultan N. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. Journal of Oral Rehabilitation. 2005;32:518-25.
    [35] Liu Y, Yang C-H, Li J. Influence of Extracellular Polymeric Substances on Pseudomonas aeruginosa Transport and Deposition Profiles in Porous Media. Environmental Science & Technology. 2006;41:198-205.
    [36] Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. Journal of Clinical Microbiology. 1991;29:297-301.
    [37] Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion. Langmuir. 2003;19:6912-21.
    [38] Wang I-w, Anderson JM, Marchant RE. Staphylococcus epidermidis Adhesion to Hydrophobic Biomedical Polymer Is Mediated by Platelets. Journal of Infectious Diseases. 1993;167:329-36.
    [39] Mills AL, Herman JS, Hornberger GM, Dejesus TH. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand. Applied and environmental microbiology. 1994;60:3300-6.
    [40] Hua H, Li N, Wu L, Zhong H, Wu G, Yuan Z, Lin X, Tang L. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. Journal of Environmental Sciences. 2008;20:565-70.
    [41] Theppaleak T, Tumcharern G, Wichai U, Rutnakornpituk M. Synthesis of water dispersible magnetite nanoparticles in the presence of hydrophilic polymers. Polymer Bulletin. 2009;63:79-90.
    [42] Zhang X, Shen Z, Feng C, Yang D, Li Y, Hu J, Lu G, Huang X. PMHDO-g-PEG Double-Bond-Based Amphiphilic Graft Copolymer: Synthesis and Diverse Self-Assembled Nanostructures. Macromolecules. 2009;42:4249-56.
    [43] Xiong F, Li J, Wang H, Chen Y, Cheng J, Zhu J. Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal. Polymer. 2006;47:6636-41.
    [44] Wang L, Wang S, Bei Jz. Synthesis and characterization of macroinitiator-amino terminated PEG and poly(γ-benzyl-L-glutamate)-PEO-poly(γ-benzyl-L-glutamate) triblock copolymer. Polymers for Advanced Technologies. 2004;15:617-21.
    [45] Yu Q, Zhang Y, Wang H, Brash J, Chen H. Anti-fouling bioactive surfaces. Acta Biomaterialia. 2011;7:1550-7.
    [46] Fan X, Lin L, Dalsin JL, Messersmith PB. Biomimetic Anchor for Surface-Initiated Polymerization from Metal Substrates. Journal of the American Chemical Society. 2005;127:15843-7.
    [47] Huisgen R. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angewandte Chemie International Edition in English. 1963;2:633-45.
    [48] Becer CR, Hoogenboom R, Schubert US. Click Chemistry beyond Metal-Catalyzed Cycloaddition. Angewandte Chemie International Edition. 2009;48:4900-8.
    [49] Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie. 2002;114:2708-11.
    [50] Huisgen R. 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English. 1963;2:565-98.
    [51] Mansfeld U, Pietsch C, Hoogenboom R, Becer CR, Schubert US. Clickable initiators, monomers and polymers in controlled radical polymerizations - a prospective combination in polymer science. Polymer Chemistry. 2010;1:1560-98.
    [52] Chen G, Tao L, Mantovani G, Ladmiral V, Burt DP, Macpherson JV, Haddleton DM. Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry". Soft Matter. 2007;3:732-9.
    [53] Zhang T, Zheng Z, Ding X, Peng Y. Smart Surface of Gold Nanoparticles Fabricated by Combination of RAFT and Click Chemistry. Macromolecular Rapid Communications. 2008;29:1716-20.
    [54] Zhang Y, He H, Gao C, Wu J. Covalent Layer-by-Layer Functionalization of Multiwalled Carbon Nanotubes by Click Chemistry. Langmuir. 2009;25:5814-24.
    [55] Tanimoto Y, Saeki H, Kimoto S, Nishiwaki T, Nishiyama N. Evaluation of adhesive properties of three resilient denture liners by the modified peel test method. Acta Biomaterialia. 2009;5:764-9.
    [56] Park J-M, Kim Y-S, Jun S-G, Park E-J. The study on the shear bond strength of resin and porcelain to Titanium. J Korean Acad Prosthodont. 2009;47:46-52.
    [57] Niamsa N, Srisuwan Y, Baimark Y, Phinyocheep P, Kittipoom S. Preparation of nanocomposite chitosan/silk fibroin blend films containing nanopore structures. Carbohydrate Polymers. 2009;78:60-5.
    [58] Mutluay MM, Ruyter IE. Evaluation of bond strength of soft relining materials to denture base polymers. Dental Materials. 2007;23:1373-81.
    [59] Kutay O. Comparison of tensile and peel bond strengths of resilient liners. The Journal of Prosthetic Dentistry. 1994;71:525-31.
    [60] Hatamleh MM, Watts DC. Bonding of maxillofacial silicone elastomers to an acrylic substrate. Dental Materials. 2010;26:387-95.
    [61] Kawano F, Dootz ER, Koran Iii A, Craig RG. Comparison of bond strength of six soft denture liners to denture base resin. The Journal of Prosthetic Dentistry. 1992;68:368-71.
    [62] Cheng J-Y, Wei C-W, Hsu K-H, Young T-H. Direct-write laser micromachining and universal surface modification of PMMA for device development. Sensors and Actuators B: Chemical. 2004;99:186-96.
    [63] Lin WJ, Chen TD, Liu CW, Chen JL, Chang FH. Synthesis of lactobionic acid-grafted-pegylated-chitosan with enhanced HepG2 cells transfection. Carbohydrate Polymers. 2011;83:898-904.
    [64] Wang DK, Hill DJT, Rasoul FA, Whittaker AK. Synthesis of a new hyperbranched, vinyl macromonomer through the use of click chemistry: Synthesis and characterization of copolymer hydrogels with PEG diacrylate. Journal of Polymer Science Part A: Polymer Chemistry. 2012;50:1143-57.

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE