簡易檢索 / 詳目顯示

研究生: 張文謙
Wen-Chien Chang
論文名稱: 傘齒輪CNC切齒機之面銑式加工
Manufacture of Face-Milled Bevel Gear On A CNC Cutting Machine
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 徐瑞宏
Ruei-Hung Hsu
李維楨
Wei-Chen Lee
陳冠辰
Guan-Chen Chen
陳冠宏
Gwan-Hon Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 117
中文關鍵詞: 面銑式傘齒輪CNC切齒機三維環線切削模擬未變形切屑體積移除率自動對齒
外文關鍵詞: face milling, bevel gear cutting machine, three-dimensional loop method, cutting simulation, undeformed chip, material removal rate, automatic tooth-gap alignment
相關次數: 點閱:342下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螺旋傘齒輪和戟齒輪的製造方式主要分為兩種,分別為面銑式切製法以及面滾式切製法,由於面銑式切製法能夠用於切齒以及研磨,面銑式較面滾式擁有較佳的加工精度,且其刀具設定和磨銳相對簡單,故工業界大多採用此切製法。為做齒面誤差修正和磨齒,需要給齒輪預留量,進行第二次加工或磨齒,因此必須執行自動對齒找到齒空位置。
本研究改善了以往使用的傘齒輪面銑式切削模擬方法,因此可以模擬出所有的面銑式加工工序,此方法是基於三維環線法,可進一步用於建立未變形切屑數學模式,計算出未變形切屑體積,並且還可以透過未變形切屑體積和切削進給速率推導出體積移除率(MRR),以優化切削效率,而其中的未變形切屑體積透過SOLIDWORKS 3D設計軟體對數學模式進行驗證。
此外,本研究建立了探頭量測座標系統,以推導傘齒輪凸面和凹面的接觸量測位置,再以此編程NC程式達到自動對齒的功能,並透過VERICUT模擬軟體驗證其NC程式的正確性。最後在傘齒輪CNC切齒機進行切削實驗,透過實驗找出體積移除率與主軸扭矩之間的關聯性,以此優化切削速度,從而降低加工時間,在大齒輪成形法粗加工節省約18%的加工時間,小齒輪創成法粗加工節省約44%的加工時間。


There are two main manufacturing methods of spiral bevel gears and hypoid gear: face milling and face hobbing. Since face milling can perform cutting and grinding processes, it has better machining accuracy than face hobbing. And its tool setting and re-sharpening system are simpler than face hobbing. Therefore, the gear industry mainly adopts this method. The new six-axis CNC bevel gear cutting machine can adopt both cutting systems. To enhance the machine’s competitiveness, cutting speed optimization is demanded to increase productivity. Moreover, second machining is necessary to correct the flank errors and finish grinding. Thus, the machine must perform automatic tooth-gap alignment to find a tooth gap.
This research improves the previous cutting simulation method for producing bevel gear using face milling. Therefore, it can simulate all face-milling processes. This simulation is based on the three-dimensional loop method. It can be further adopted to establish the mathematical model of undeformed cutting chips. And we also can use chip volume and cutting feed rate to derive the material removal rate (MRR) for optimization of cutting feed rate. Here, SolidWorks 3D design software is adopted to prove the mathematical models. Moreover, the research establishes the measuring coordinate system of the probe. It is adopted to derive the touch positions of convex and concave flanks. These positions can be used to program an NC program for automatic tooth-gap alignment. And VERICUT CNC simulation software is performed to verify its correctness. Finally, we conduct cutting experiments on the CNC bevel gear cutting machine to find the correlation between the MRR and the cutting torques of the spindle. That is then used to optimize the cutting feed rates. The processing times of rough cuttings for the gear and the pinion are reduced by 18% and 44%, respectively.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝 誌 V 目 錄 VI 符號索引 IX 圖索引 XV 表索引 XIX 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機 4 1.4 研究目的 4 1.5 論文架構 5 第2章 面銑式傘齒輪齒面數學模式 6 2.1 前言 6 2.2 傘齒輪齒胚設計與參數計算 6 2.3 面銑式傘齒輪之刀具數學模式 7 2.4 泛用型搖台式傘齒輪切齒機之機械設定 8 2.5 螺旋傘齒輪和戟齒輪齒面數學模式 10 2.6 傘齒輪CNC切齒機切齒座標推導 11 2.7 數值範例 13 2.8 小結 16 第3章 自動對齒數學模式 17 3.1 前言 17 3.2 量測座標和對齒探頭量測位置推導 17 3.3 對齒NC程式規劃 19 3.4 數值範例 21 3.5 小結 23 第4章 傘齒輪三維環線法面銑式加工模擬 24 4.1 前言 24 4.2 三維環線法切削模擬說明 24 4.3 建立齒胚三維環線 25 4.4 三維環線Dexel模型傘齒輪面銑式成形法加工模擬 29 4.4.1 成形法加工工序 29 4.4.2 成形法加工模擬流程 30 4.4.3 解成形法之刀具面與齒胚三維環線交點 31 4.5 三維環線Dexel模型傘齒輪面銑式創成法加工模擬 32 4.5.1 創成法加工工序 32 4.5.2 創成法加工模擬流程 33 4.5.3 解創成法之刀具面與齒胚三維環線交點 34 4.6 數值範例 35 4.7 小結 39 第5章 傘齒輪面銑式加工之未變形切屑數學模式 40 5.1 前言 40 5.2 未變形切屑數學模式建立流程說明 40 5.3 未變形切屑數學模式 41 5.3.1 成形法之未變形切屑點 42 5.3.2 創成法之未變形切屑點 42 5.3.3 切屑分類 43 5.3.4 建立四面體網格 45 5.4 切屑體積及體積移除率計算 50 5.5 數值範例 52 5.6 小結 69 第6章 面銑式加工體積移除率與切削力關聯性分析 71 6.1 前言 71 6.2 六軸CNC傘齒輪切齒機之切削力資料讀取方法 71 6.2.1 擷取NCU系統參數資料 71 6.2.2 使用OPC UA調用NCU系統參數 72 6.3 大齒輪成形法加工體積移除率與切削力關聯性 74 6.4 小齒輪創成法加工體積移除率與切削力關聯性 77 6.5 切削速度優化 80 6.5.1 大齒輪成形法粗加工切削速度優化 80 6.5.2 小齒輪創成法粗加工切削速度優化 86 6.6 小結 91 第7章 結果與建議 93 7.1 結果與討論 93 7.2 建議與未來展望 94 參考文獻 95

[1] Litvin, F. L., and Gutman, Y., 1981, "Methods of synthesis and analysis for hypoid gear-Drives of fifi formate and “helixform”: Part 1. Calculations for machine settings for member gear manufacture of the formate and helixform hypoid gears," J. Mech. Des., Trans. ASME, 103(1), pp. 83-88.
[2] Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., 1988, "Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears," J. Mech. Des., Trans. ASME, 110(4), pp. 495-500.
[3] Fong, Z. H., and Tsay, C. B., 1991, "A mathematical model for the tooth geometry of circular-cut spiral bevel gears," J. Mech. Des., Trans. ASME, 113(2), pp. 174-181.
[4] Lin, C. Y., Tsay, C. B., and Fong, Z. H., 1997, "Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method," Mech. Mach. Theory, 32(2), pp. 121-136.
[5] Fong, Z. H., and Tsay, B. C. B., 1991, "A study on the tooth geometry and cutting machine mechanisms of spiral bevel gears," J. Mech. Des., Trans. ASME, 113(3), pp. 346-351.
[6] Fong, Z. H., 2000, "Mathematical model of universal hypoid generator with supplemental kinematic flank correction motions," J. Mech. Des., Trans. ASME, 122(1), pp. 136-142.
[7] Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2007, "Mathematical model for a universal face hobbing hypoid gear generator," J. Mech. Des., Trans. ASME, 129(1), pp. 38-47.
[8] Shih, Y. P., and Fong, Z. H., 2008, "Flank correction for spiral bevel and hypoid gears on a six-Axis CNC hypoid generator," J. Mech. Des., Trans. ASME, 130(6), pp. 0626041-06260411.
[9] Fan, Q., Dafoe, R. S., and Swanger, J. W., 2008, "Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears," J. Mech. Des., Trans. ASME, 130(7), pp. 0726011-0726017.
[10] Fan, Q., 2010, "Tooth surface error correction for face-hobbed hypoid gears," J. Mech. Des., Trans. ASME, 132(1), pp. 0110041-0110048.
[11] Shih, Y. P., Sun, Z. H., and Lai, K. L., 2017, "A flank correction face-milling method for bevel gears using a five-axis CNC machine," Int. J. Adv. Manuf. Technol., 91(9-12), pp. 3635-3652.
[12] Hsu, R. H., Shih, Y. P., Fong, Z. H., Huang, C. L., Chen, S. H., Chen, S. S., Lee, Y. H., and Chen, K. H., 2020, "Mathematical model of a vertical six-axis Cartesian computer numerical control machine for producing face-milled and face-hobbed bevel gears," J. Mech. Des., Trans. ASME, 142(4).
[13] Lorensen, W. E., and Cline, H. E., 1987, "Marching cubes: a high resolution 3D surface construction algorithm," Comput Graphics (ACM), 21(4), pp. 163-169.
[14] Gottschalk, S., Lin, M. C., and Manocha, D., 1996, "OBBTree: A hierarchical structure for rapid interference detection," Proceedings of the 1996 Computer Graphics Conference, SIGGRAPH, New Orleans, LA, USA, pp. 171-180.
[15] Eberly, D., 2001, "Dynamic collision detection using oriented bounding boxes," Mathematics.
[16] Van Hook, T., 1986, "Real-time shaded NC milling display," 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, pp. 15-20.
[17] Zhang, W., Peng, X., Leu, M. C., and Zhang, W., 2007, "A novel contour generation algorithm for surface reconstruction from dexel data," J. Comput. Inf. Sci. Eng., 7(3), pp. 203-210.
[18] Böß, V., Denkena, B., Breidenstein, B., Dittrich, M. A., and Nguyen, H. N., 2019, "Improving technological machining simulation by tailored workpiece models and kinematics," 17th CIRP CMMO, 82, pp. 224-230.
[19] Inui, M., Huang, Y., Onozuka, H., and Umezu, N., 2020, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation," 48th SME NAMRC, 48, pp. 520-527.
[20] 丁詮峰,2021,基於三維環線法之傘齒輪面銑式切削模擬,碩士,國立臺灣科技大學,台北市。
[21] Warkentin, A., Ismail, F., and Bedi, S., 1998, "Intersection approach to multi-point machining of sculptured surfaces," Comput. Aided Geom. Des., 15(6), pp. 567-584.
[22] Warkentin, A., Ismail, F., and Bedi, S., 2000, "Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces," Comput. Aided Geom. Des., 17(1), pp. 83-100.
[23] Yanwei, X., Lianhong, Z., Wei, W., and Leping, W., 2009, "Virtual simulation machining on spiral bevel gear with new type spiral bevel gear milling machine," ICMTMA, Zhangjiajie, Hunan, 2, pp. 432-435.
[24] Wang, Y., Wang, T. Y., Lin, F. X., Lu, Z. L., and Wang, D., 2013, "The research of the epicycloids bevel gear cutting based on the common six-axis machine," Advanced Materials Research, Vol.819, pp. 110-114.
[25] Altintas, Y., and Merdol, S. D., 2007, "Virtual high performance milling," CIRP Ann. Manuf. Technol., 56(1), pp. 81-84.
[26] Merdol, S. D., and Altintas, Y., 2008, "Virtual simulation and optimization of milling applications - Part II: Optimization and feedrate scheduling," J. Manuf. Sci. Eng. Trans. ASME, 130(5), pp. 0510051-05100510.
[27] Chen, S. H., and Fong, Z. H., 2015, "Study on the cutting time of the hypoid gear tooth flank," Mech. Mach. Theory., 84, pp. 113-124.
[28] Fu, H. J., DeVor, R. E., and Kapoor, S. G., 1984, " Mechanistic model for the prediction of the force system in face milling operations," J. Eng. Ind. Trans. ASME, 106(1), pp. 81-88.
[29] Suzuki, T., Kondo, S., and Ueno, T., 1985, " Study on the cutting forces for spiral bevel gears," Bull. JSME, 28(240), pp. 1316-1323.
[30] Kundrák, J., Markopoulos, A. P., Makkai, T., Deszpoth, I., and Nagy, A., 2018, "Analysis of the effect of feed on chip size ratio and cutting forces in face milling for various cutting speeds," Manuf. Technol., 18(3), pp. 431-438.
[31] McCloskey, P., Katz, A., Berglind, L., Erkorkmaz, K., Ozturk, E., and Ismail, F., 2019, "Chip geometry and cutting forces in gear power skiving," CIRP Ann. Manuf. Technol., 68(1), pp. 109-112.
[32] Azvar, M., Katz, A., Van Dorp, J., and Erkorkmaz, K., 2021, "Chip geometry and cutting force prediction in gear hobbing," CIRP Ann. Manuf. Technol., 70(1), pp. 95-98.
[33] Onozuka, H., Tayama, F., Huang, Y., and Inui, M., 2020, "Cutting force model for power skiving of internal gear," J. Manuf. Processes, 56, pp. 1277-1285.
[34] Zheng, F., Han, X., Hua, L., Tan, R., and Zhang, W., 2021, "A semi-analytical model for cutting force prediction in face-milling of spiral bevel gears," Mech. Mach. Theory, 156.
[35] Zheng, F., Han, X., Lin, H., and Zhao, W., 2021, "Research on the cutting dynamics for face-milling of spiral bevel gears," Mech. Syst. Signal Process, 153.
[36] ANSI/AGMA ISO 23509-A08, 2008, "Bevel and hypoid gear geometry," Alexandria, USA.
[37] The Gleason Works, 2000, "Face hobbing development," Rochester, NY.
[38] The Gleason Works, 2014, "Bevel Gear Technology," Rochester, NY.

無法下載圖示 全文公開日期 2027/09/06 (校內網路)
全文公開日期 2027/09/06 (校外網路)
全文公開日期 2027/09/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE