簡易檢索 / 詳目顯示

研究生: 莊皓翔
Hao-Hsiang Chuang
論文名稱: 基於體素法之面銑式螺旋傘齒輪切削模擬
Cutting Simulation for Face-Milled Spiral Bevel Gears Based on the Voxel Method
指導教授: 石伊蓓
Yi-pei Shih
口試委員: 尤春風
Chun-Fong You
蔡高岳
Kao-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 面銑式切製法體素法移動立方體STL三角面齒面拓樸誤差體積移除
外文關鍵詞: Face milling cutting method, voxel method, marching cube, STL format, tooth surface deviations, volume removal
相關次數: 點閱:220下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面銑式的切製法為螺旋傘齒輪的主要量產製造方法,此切製法必須實施於五軸CNC機台。加工時需要用到多軸運動,並且刀具的設計比較複雜,因此為了避免碰撞發生,預先模擬刀具路徑和切削以驗證NC加工路徑的正確性。
    本研究的目的是開發一套專門模擬切削面銑式螺旋傘齒輪的軟體,使用Visual C# 2010為開發平台,並以OpenGL圖形庫顯示三維模擬環境。模擬切削是使用體素法,首先建立刀具的曲面數學模式,齒胚實體模型則使用適應性的立方體(Cube)建立,並以體素(Voxel)記錄立方體節點的位置。根據NC加工路徑與坐標轉換矩陣,可得到刀具和齒胚的相對位置,並以布林運算計算切削模擬。
    再者,本研究使用移動立方體(Marching cube)演算法優化顯示被切削的齒面,並且將被切削齒面儲存成STL格式。為了驗證加工NC碼是否正確,本文提出一種齒面誤差評估方法,以比較STL齒面與理論齒面的法向量誤差。開發之軟體亦可即時模擬切削時的體積變化,以做為進一步優化NC加工路徑的基礎。


    Face milling is a popular cutting method in mass production of spiral bevel gears. A CNC machine with five-axis simultaneous control system is demanded to implement face milling. This cutting method needs multi-axis movement and its tool design is complex. Therefore, in order to avoid collision, the simulation of tool paths and material removal should be performed previously to verify the correctness of NC codes.
    The study aims to develop a dedicated cutting simulation software for face-milled spiral bevel gears. Visual C# 2010 integrated with OpenGL is used as a foundation to develop the simulation program. Here, a voxel method for cutting simulation is employed. The mathematical model of tool surface is first established. The solid model of work gear is composed by cubes in which voxels are used to store the positions and values of those vertexes. According to the NC code, the relative positions between the tool and the work gear are determined through the coordinate transformations. And then, Boolean difference operation between the gear work and tool is made to simulate gear cutting.
    Moreover, the marching cube algorithm is adopted to improve the display resolution of produced tooth surfaces which are save as STL (Stereolithography) format. In order to verify the correctness of NC codes, an evaluation method is proposed to obtain tooth surface deviations between the produced STL surfaces and theoretical surfaces. And, the volume removal is obtained in real-time cutting simulation, which can be used as a beneficial data for further reach in optimization of NC tool paths.

    本研究將發展齒輪專用的實體切削模擬軟體,第一階段目標設定為切削傘齒輪的面銑式製造方法,將刀具以砂輪建立數學模式,工件齒輪則以體素法(Voxel)建立實體模型,再根據NC加工碼,以座標轉換(Coordinate transformation)計算刀具與工件的相對位置,最後再做刀具與工件的布林差集來模擬齒輪切削。此一技術建立,可做為下一階段發展面滾式切製法的基礎。本研究將使用Visual C# 2010做為開發平台,建立一套面銑式切製法傘齒輪的實體切削模擬軟體,讀入外部加工NC碼,以驅動刀具和工件做相對運動。所設計的軟體功能包含NC加工路徑的模擬、即時實體切削和體積移除率計算,並將透過Open GL的函式庫呈現工件齒輪的三維切削模擬結果。

    [1]F. L. Litvin and Y. Gutman, “Methods of Synthesis and Analysis for Hypoid Gear-Drives of ‘Format’ and ‘Helixform’, Part 1, 2 and 3”, ASME J. Mech. Des., Vol. 103, Issue. 1, pp. 83-110, 1981.
    [2]F. L. Litvin, Y. Zhang, M. Lundy and C. Heine, “Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears”, ASME J. Mech. Transm. Autom. Des., Vol. 110, issue. 4, pp. 495-500, 1988.
    [3]Z. H. Fong, and C. B. Tsay, “A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears”, ASME J. Mech. Des., Vol. 113, Issue. 2, pp. 174-181, 1991.
    [4]C. Y. Lin, C. B. Tsay and Z. H. Fong, “Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method”, ELSEVIER Mech. Mach. Theory, Vol. 32, Issue. 2, pp. 121-136, 1997.
    [5]Z. H. Fong, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motion,” ASME J. Mech. Des., Vol. 103, Issue. 1, pp. 136-142, 2000.
    [6]F. L. Litvin, W. S. Chaing, C. Kuan, M. Lundy, and W. J. Tsung, “Generation and Geometry of Hypoid Gear-Member with Face-Hobbed Teeth of Uniform Depth”, ELSEVIER Int. J. Mach. Tools Manufact., Vol. 31, Issue. 2, pp. 167-181, 1991.
    [7]M. Lelkes, J. Marialigeti and D. Play, “Numerical Determination of Cutting Parameters for the Control of Klingelnberg Spiral Bevel Gear Geometry”, ASME J. Mech. Des., Vol. 124, Issue. 4, pp. 761-771, 2002.
    [8]董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京,2002。
    [9]ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA, USA (2008).
    [10]Gleason Works, Calculation Instructions — Generated Spiral Bevel Gears, Duplex–Helical Method, Including Grinding, Rochester, NY, USA (1971).
    [11]Y. P. Shih, G. C. Lin and Z. H. Fong, “Mathematical Model for a Universal Face-Hobbing Hypoid Gear Generator”, ASME J. Mech. Des., Vol. 129, Issue. 1, pp. 457–467, 2006.
    [12]T. J. Krenzer, E. J. Hunkeler and R. N. Goldrich, “Multi-Axis Bevel and Hypoid Gear Generating Machine”, US Patent No. 4.981.4029, 1991.
    [13]J. Thomas and O. Vogel, “6M Machine Kinematics for Bevel and Hypoid Gears”, TIB Proce. International Conference on Gears, Munich, VDI Report No. 1904, pp. 435-452, 2005.
    [14]Y. P. Shih and Z. H. Fong, “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator”, ASME J. Mech. Des., Vol. 130, Issue. 6, No. 062604, 2008.
    [15]簡文通,機械製造,全華圖書,台北,第八章,2008。
    [16]Alfred V. Aho,編譯系統設計,碁峰資訊,2006。
    [17]林秉毅,車銑複合五軸工具機之 PC-based CNC 即時系統設計與實現,國立成功大學碩士論文,2003。
    [18]吳稚逸,基於STEP-NC之五軸曲面加工,國立清華大學碩士論文,2004。
    [19]SINUMERIK, 840D/840Di/810D RPC SINUMERIK Computer Link Function Manual, 10.05 Edition.
    [20]黃建凱,直進式刮齒刀插槽設計與切削模擬平台開發,國立虎尾科技大學碩士論文,2011。
    [21]林冠亨,泛用型齒輪加工機切削模擬方法研究,國立中正大學碩士論文,2010。
    [22]蘇宏旻,面滾式直傘齒輪SolidWorks API切削模擬,國立台灣科技大學碩士論文,2013。
    [23]S. Gottschalk, M. C. Lin and D. Manocha, “OBBTree: A Hierarchical Structure for Rapid Interference Detection,” ACM Proce. SIGGRAPH, pp. 171-180, NY, USA, 1996.
    [24]K., Yuan, C., Xu, Q. Du, and Y., Fu, “Collision Detection for A Haptic Interface”, IEEE, pp. 278-283, 2003.
    [25]G. V. D. Bergen, “Efficient Collision Detection of Complex Deformable Models Using AABB Trees”, CiteSeer J. Graphics Tools Archive, pp. 1-13, 1998.
    [26]O. Tropp, “A Fast Triangle-Triangle Intersection Test”, CiteSeer Computer Animation and Virtual Worlds, Vol. 2, No.2, pp.25-30, 1997.
    [27]W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, ACM Proce. SIGGRAPH, Vol. 21, Issue 4, pp. 163-169, NY, USA, 1987.
    [28]C. Montan, R., Scateni and R. Scopigno, “Discretized Marching Cubes”, IEEE, pp. 281-287, Italy, 1994.
    [29]S. Renben, Z. Chen and S. K. Mohan, “Adaptive marching cubes”, The Visual Computer, Vol. 11, Issue 4, pp. 202-217, Singapore, 1995.
    [30]R. Shekhar, E. Fayyad, R. Yagel and J. Fredrick Cornhill, “Octree-Based Decimation of Marching Cubes Surfaces”, IEEE, pp. 335-342, 1996.
    [31]A. GuCziec and R. Humel, “Exploiting Triangulated Surface Extraction using Tetrahedral Decomposition”, IEEE, Vol. 1, pp. 328-342, 1995.
    [32]洪將涵,針對資料視覺化所設計之簡單及快速的種子集建構系統,國立台灣科技大學碩士論文,2005。
    [33]顏楷倫,模造螺旋傘齒輪設計,國立台灣科技大學碩士論文,2013。

    QR CODE