簡易檢索 / 詳目顯示

研究生: 廖勝權
SHENG-CHUAN LIAO
論文名稱: 形成多孔性銅之研究
The Study of Forming Porous Copper
指導教授: 周賢鎧
Shyankay Jou
口試委員: 鄭偉鈞
Wei-chun Cheng
胡毅
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化還原
外文關鍵詞: copper, oxide, reduce
相關次數: 點閱:255下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究將銅材料形成多孔材質,其過程包含二部份:先將銅片加熱氧化形成氧化物奈米線,再於稀釋氫氣中加熱還原成為銅。
實驗結果顯示,將銅片於300°C、400°C及500°C分別持溫2~72小時後,銅片表面出現平均直徑20-50 nm及高度約2μm、直徑80-250 nm及高度約6μm、直徑300-800 nm及高度約20μm之氧化銅奈米線。再將氧化生成物利用氫還原方式將氧去除,還原溫度於275°C時其奈米線仍保留原線形;還原溫度於300°C -400°C形成珊瑚狀結構,且溫度越高微結構尺度越大。當溫度升高至500°C時,銅原子互相聚集致使孔洞越來越少,直至600°C表面孔洞完全密合。


Porous structures are produced by sequential processes of copper (Cu).These processes include heating the Cu to form the oxide nanowires and then reducing those nanowires back to Cu by thermal processing in diluted hydrogen (H2).
In the oxidized Cu,the relation between the diameter and length of oxide nanowires for different temperatures are shown as following : 20-50 nm wide and 2μm long for 300°C, 80-250 nm wide and 6μm long for 400°C, 300-800 nm wide and 20μm long for 500°C. Wire-form still remains after reducing oxide nanowires at 275°C .The coalescence of nanowires takes place to form porous structure in the temperature range of 300°C -400°C,and to form dense structure in 500-600°C

中文摘要..................................................I 英文摘要.................................................II 誌謝....................................................III 目錄.....................................................IV 圖目錄....................................................V 第一章、文獻回顧...........................................1 第二章、實驗原理...........................................4 2.1、氧化銅奈米線成長機制..................................4 2.2、銅、氧化銅及氧化亞銅特性..............................5 2.3、氧化銅奈米線形成......................................7 2.4、氧化還原原理..........................................7 第三章、實驗方法與步驟....................................10 3.1、實驗材料.............................................10 3.2、實驗儀器及裝置.......................................10 3.2.1、磁控射頻濺鍍系統...................................10 3.2.2、石英管狀爐.........................................11 3.2.3、平板加熱器.........................................12 3.2.4、場發射掃瞄電子顯微鏡...............................13 3.2.5 、X射線繞射分析儀...................................14 3.3、實驗步驟.............................................16 3.3.1、基材試片準備.......................................16 3.3.2、銅薄膜之製備.......................................16 3.3.3、氧化及還原步驟.....................................17 第四章、實驗結果與討論....................................19 4.1、氧化銅奈米線形態.....................................19 4.2、X光繞射分析..........................................27 4.3、能量分散式光譜儀(EDS)分析............................29 4.4、還原.................................................36 第五章、結論..............................................58 參考文獻....................... ..........................59

1.P. Poizot, S. Laruelle, S. Grugeon, L. Dupont & J-M. Tarascon , “ Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature 407 (2000) 496
2.John B. Reitz and Edward I. Solomon, “Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity”, J. Am. Chen. Soc. 120 (1998) 11467-11478
3.Dong Sun, Andrew E. Riley, Ashley J. Cadby, Erik K. Richman, Scott D. Korlann and Sarah H. Tolbert, “Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters”, Nature 441 (2006) 1126-1130
4.F.J. Garca de Abajo, N.I. Zheludev, “Focusing of light by a nanohole array”, Appl. Phys. Lett.90 (2007) 091119
5.洪忠義,「奈米多孔性材料之製備」,國立中央大學化學工程與材料工程研究所碩士論文,民國92年6月。
6.R. Liu, A. Schmedake, Y.Y. Li, M. J. Sailor, Y.Fainman, “Novel porous silicon vapor sensor based on polarization interferometry”, Sens.Actuators B 87 (2002) 58–62
7.R.Takagi, “ Growth of Oxide Whiskers On Metals at High Temperature”, J. Phys. Soc. Jpn.12 (1957) 1212
8.Y.K.Su,C.M.Shen,H.T.Yang, “Controlled sythesis of highly ordered CuO nanowire arrays by templated sol-gel route”, Trans.Nonferrous Met. Soc. China 17 (2007) 783-786
9.Y. Zhou, S. Kamiya , H. Minamikawa, T. Shimizu,” Controlled Sheathing of CuO Nanowires by a Self-Assembled Tubular Glycolipid”,Adv.Mater.19(2007)4194
10.L.S.Huang,S.G.Yang,T.Li,B.X.Gu,Y.W.Du,”preparation of larg-scale cupric oxid nanowires by thermal evaporation method”, Journal of Crystal Growth 260(2004)130-135
11.C.H.Xu,C.H.Woo,S.Q.Shi,”formation of cuo nanowires on cu foil” ,Chem. Phys.lett.399(2004)62-66
12.Q.Yong, S. Thorsten , J.Xin,”Preparation of aligned Cu nanowires by room-temperature reduction of Cuo nanowires in electron cyclotron resonance hydrogen plasma”,Nanotechnology 18(2007)035608
13.R.S.Wagner and W.C.Ellis,”VAPOR-Liquid-Solid Mechanism of Single Crystall Growth”, Appl.Phys.Lett4 (1964) 89-90
14.Y.J. Hsu and S.Y. Lu, “Vapor-Solid growth of Sn nanowires”, J. Phys. Chem.B.109 (2005) 4398-4403.
15.A.E. Rakhshni, “Prepare,characteristics and photovoltaic properties of cuprous oxide-A review”, Solid State Electron. 29 (1986) 7.
16.C. Wagner. “Beitrag zur Theorie des Anlaufvorgangs”, Z. Phys. Chem. 21 (1933) 25.
17.David .R.Gasket, Introduction to metallurgical thermodynamics 2nd ,McGraw-hill, 1981.
18.C.H.Xu, C.H.Woo, S.Q.Shi, “Formation of cuo nanowires on cu foil”, Chem. Phys. 399 (2004) 62-66
19.田民波著,薄膜技術與薄膜材料,五南圖書出版股份有限公司,2007年,P.607。
20.陳力俊等著,材料電子顯微鏡學,國科會精儀中心編印,1980年,P.289。

QR CODE