簡易檢索 / 詳目顯示

研究生: 林京樺
Ching-hua Lin
論文名稱: 高功率儀表用直流電源供應器之研製
Study and Implementation of a DC Power Supply for High-Power Instrument Applications
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 林忠義
Chung-Yi Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 交錯式功率因數修正器全橋串聯諧振轉換器
外文關鍵詞: nterleaved boost PFC, full-bridge series resonant converter
相關次數: 點閱:336下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在於研究和設計一個高功率及高效率之直流電源供應器。電路前級採用兩相交錯式功率因數修正器,提高功率因數及降低輸入電流漣波。後級採用全橋串聯諧振轉換器,實現零電壓及零電流切換,減少開關元件應力,提高輸出效率,並具備輸出與輸入之間的電氣隔離。最後對實際設計的6kW電源供應器進行量測與分析,實驗結果證實,在輸入AC 380V的情況下,二級串接的整機滿載效率可達94%。


    This thesis presents the study and design of a high-power and high-efficiency DC power supply. The front stage is a two-phase interleaved power factor correction (PFC) circuit to achieve high power factor and low input current ripple. The post stage is a full-bridge series resonant converter (FB-SRC) with zero-voltage switching (ZVS) and zero-current switching (ZCS). It can reduce the stress on the power switches, raise the efficiency and achieve electrical isolation between input and output. Finally, a 6-kW power supply is implemented and tested. The experimental results are shown to verify the feasibility of the proposed power supply. A 94% full-load efficiency is achieved by the cascaded two-stage circuit under AC 380V input voltage condition.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 高功率儀表用直流電源供應器架構介紹 2 1.3 內容大綱 3 第二章 功率因數修正器架構與原理簡介 5 2.1 功率因數的定義 5 2.2 功率因數修正器之架構與工作原理 11 2.2.1 主動功率因數修正器的控制模式 11 2.2.2 升壓型單相標準式 12 2.3.3 升壓型雙相交錯式 16 2.2.4 升壓型單相標準式與升壓型雙相交錯式比較 34 第三章 全橋串聯諧振轉換器動作原理 35 3.1 理想R-L-C串聯電路的頻率響應 35 3.2 全橋串聯諧振轉換器動作分析 36 3.2.1 SRC諧振模式 38 3.2.2 全橋串聯諧振轉換器動作狀態分析 39 3.3 全橋串聯諧振轉換器之諧振網目分析 44 3.3.1 Q值對轉移函數的影響 45 3.3.2 K值對轉移函數的影響 46 第四章 電路設計 48 4.1 兩相交錯式功率因數修正器電路設計 48 4.1.1 電路規格 48 4.1.2 功率級元件設計 48 4.1.3 控制IC UCC28070介紹 52 4.1.4 控制級元件設計 54 4.2 全橋串聯諧振轉換器電路設計 60 4.2.1 電路規格 60 4.2.2 功率級元件設計 60 4.2.3 控制IC TL494介紹 65 4.2.4 控制級元件設計 67 4.2.5 設計定頻開迴路全橋串聯諧振轉換器增益曲線 68 第五章 電路模擬與實測結果 70 5.1 兩相交錯式功率因數修正器模擬 70 5.2 定頻開迴路全橋串聯諧振轉換器模擬 76 5.3 兩相交錯式功率因數修正器實測波形與數據 80 5.3.1 實測波形 80 5.3.2 實測結果 85 5.4 定頻開迴路全橋串聯諧振轉換器實測波形與數據 88 5.4.1 實測波形 88 5.4.2 實測結果 92 5.5 整機實測結果 93 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來展望 95 參考文獻 96

    [1] Roberto Martinez and Prasad N. Enjeti, “A High-Performance Single-Phase Rectifier with Input Power Factor Correction”, IEEE Transactions on Power Electronics, Vol. 11, No. 2, pp. 311-317, March. 1996.
    [2] Oscar Garcia, Jose A. Cobos, Roberto Prieto, Pedro Alou, and Javier Uceda, “Single Phase Power Factor Correction:A Survey”, IEEE Transactions on Power Electronics, Vol.18, No 3, pp. 749-754, May. 2003.
    [3] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applicat., vol. 148, pp. 202-206, 2001
    [4] J. S. Lai and D. Chen, , “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode” Proc. of IEEE APEC’93,pp.267-273,March 1993.
    [5] D. S. Chen and J. S. Lai, “A Study of Power Correction Boost Converter Operating at CCM-DCM Mode” Proc. of IEEE Southeastcon’93 ,April 1993.
    [6] J. Luo, M. K. Jeoh, and H. C. Huang, “A New Continuous Conduction Mode PFC IC with Average Current Mode Control,” IEEE International Conference on Power Electronics and Drive Systems, 2003, pp.1110-1114.
    [7] Sangsum Kim and Prasad N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function”, IEEE Transactions on Industrial Electronics, Vol. 50, No. 2, pp.328-335, April. 2003.
    [8] T. Ishii and Y. Mizutani, “Power Factor Correction Using Interleaving Technique for Critical-Mode Switching Converter,” Proceeding of IEEE International Conference on Power Electronics Specialists, 1998, pp.905-910.
    [9] Po-Wa Lee, Yim-Shu Lee, David K. W. Cheng, and Xiu-Cheng Liu, “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductor”, IEEE Transactions on Industrial Electronic, Vol. 47, No. 4, pp. 787-795, August. 2000.
    [10] José R. Pinheiro, Hilton A. Gründling, Dalton L. R. Vidor and José E. Baggio, “Control Strategy of an Interleaved Boost Power Factor Correction Converter”, IEEE Power Electronics Specialists Conference, PESC 99, Vol. 1, pp.137-142, July. 1999.
    [11] Lei Hual-Gang, Yang Xi-jun, Miao Hai-liang, and Ye Peng-sheng, “Power Switch Deiving Techniques in Single-Phase Dual-Parallel Interleaved Boost PFC”, Power Electronics and Drive Systems, PEDS 2003, Vol. 2, pp.1086-1089, November. 2003.
    [12] R. Teodorescu, S. B Kjaer, Munk-Nielsen, S. Blaabjerg, “Comparative Analysis of Three Interleaved Boost Power Factor Corrected Topologies in DCM” Proc. of IEEE PESC.2001, pp.3-7, June 2001.
    [13] T. W. Heo; Y. D. Son; E. Santi, “Analysis of the Interleaved Type Power Factor Correction Converter in Discontinuous Current Mode” Proc. of IEEE IECON.2004, pp.2706-2711, Nov 2004.
    [14] M. Veerachary, T. Senjyu, K. Uezato, “Modeling and Analysis of Interleaved Dual Boost Converter” Proc. of IEEE ISIE.2001, pp.718-722, June 2001.
    [15] C. S. Babu, M. J. Veerachary, “Predictive Controller for Interleaved Boost Converter” Proc. of IEEE ISIE.2005, pp.577-581, June 2005.
    [16] S. C. Wong, A. D. Brown, Y. S. Lee, and S. W. Ng, “Parasitic Losses Modeling of a Series Resonant Converter Circuit,” IEEE Circuits and Systems, vol. 1, pp. 921-924, 1997.
    [17] Wei Chen, Yilei Gu, and Zhengyu Lu, “A Novel Three Level Full Bridge Resonant DC-DC Converter Suitable for High Power Wide Range Input Applications,” APEC, pp. 373 - 379, Feb. 25 2007-March 1 2007.
    [18] J. Dukdrik, P. Spanik, and N. D. Trip, “Zero-Voltage and Zero-Current Switching Full-Bridge DC-DC Converter With Auxiliary Transformer”, IEEE Transactions on Power Electronics, Vol. 21, NO. 5, pp.1328-1335, Sep., 2006.
    [19] J. G. Cho, J. A. Sabate, and F. C. Lee, “Novel Full Bridge Zero-Voltage-Transition PWM DC/DC Converter for High Power Applications”, IEEE APEC, pp. 143-149, 1994.
    [20] C. A. Canesin and I.Barbi, ”Novel Zero-Current-Switching PWM Converters”, IEEE Transactions on Industrial Electronics, vol. 44, number3, pp. 372-381, June 1997.
    [21] A. K. S. Bhat, “Analysis and Design of a Modified Series Resonant Converter,” IEEE Transactions on Power Electronics, pp. 423-430, 1993.
    [22] F. S. Tsai and F. C. Lee. “A Complete DC Characterization of a Constant-Frequency,Clamped-Mode, Series Resonant Converter,” IEEE PESC, pp. 987-996, 1988.
    [23] M. K. Kazimierczuk and S. Wong, “Frequency-Domain Analysis of Series Resonant Converter for Continuous Conduction Mode,” IEEE Transactions on Power Electronics, vol. 6, pp.270-279, 1992.
    [24] A. F. Hernandez, R. W. Erickson, S. Lofton, and P. Anderson, “A Large Signal Computer Model for the Series Resonant Converter,” IEEE PESC, pp. 737-744, 1991.
    [25] Texas Instruments Inc., “350-W Interleaved PFC Pre-Regulator,” User's Guide, 2005.
    [26] Texas Instruments Inc., “Using the UCC28070EVM,” User's Guide, 2008.
    [27] Texas Instruments Inc., “Interleaving Continuous Conduction Mode PFC Controller(UCC28070),” Data Sheet, 2008.
    [28] Texas Instruments Inc., “Designing Switching Voltage Regulators With the TL494,” Data Sheet, 2004.

    無法下載圖示 全文公開日期 2019/01/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE