簡易檢索 / 詳目顯示

研究生: 洪紹輔
Shao-fu Hung
論文名稱: 3 kW鋰電池充電器研製
Study and Implementation of a 3 kW Charger for Li-ion Battery
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 林景源
Jing-yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 116
中文關鍵詞: 交錯式功因修正器全橋串聯諧振轉換器定電流/定電壓充電
外文關鍵詞: constant-current/constant-voltage charging, full-bridge series resonant converter, Power factor corrector
相關次數: 點閱:403下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文目的在於研究並實作出一台3 kW鋰離子電池充電器,前級採用兩相交錯式升壓型功因修正器以提升功率因數、降低輸入電流漣波並縮小EMI濾波器體積。後級採用全橋式串聯諧振轉換器和降壓型轉換器,前者實現零電壓及零電流切換技術,降低切換損失提高效率,並具輸入及輸出的電氣隔離;後者降壓型轉換器包含定電流控制迴路及定電壓控制迴路實現鋰電池充電。本文最後成功實現了一組輸入交流電壓340 V~440 V,額定功率為3 kW,88.8 V輸出電壓的充電器,滿載效率達92%。


      This thesis presents the study and Implementation of a 3-kW charger for Li-ion battery. The front stage is a two-phase interleaved boost power factor corrector (PFC) circuit to achieve high power factor, low input current ripple and decrease the volume of EMI filter. The second stage consists of a full-bridge series resonant converter (FB-SRC) and a buck converter. The former achieves zero-voltage switching (ZVS) so that the power switch loss can be reduced and the efficiency can be improved. In addition, it also has electrical isolation between input and output. The battery charger with both constant-current and constant-voltage control loops is fulfilled by a buck converter. Finally, a charge with rated power of 3 kW, AC input voltage from 340 V to 440 V, and an output voltage of 88.8V is implemented and tested. The measured peak efficiency is up to 92 %.

    摘 要 i Abstract ii 誌謝 iii 目 錄 iv 圖索引 vii 表目錄 xi 第一章 緒論 1 1.1 研究背景及目的 1 1.2 3 kW鋰電池充電器架構介紹 2   1.2.1 兩相交錯式功率因數修正器 2   1.2.2 定頻開迴路全橋串聯諧振轉換器 3   1.2.3 定電流/定電壓降壓型轉換器 4 1.3 電池及充電法介紹 4 1.4 論文內容架構簡述 5 第二章 功因修正器原理與架構分析 7 2.1 功率因數與總諧波失真定義 7 2.2 主動功率因數修正電路架構與控制模式 10   2.2.1 電流控制模式 10   2.2.2 升壓型單相標準式功因修正器 11 2.3 升壓型多相轉換器介紹 15 2.4 升壓型兩相交錯式電路分析 16   2.4.1 D < 0.5操作區間分析 18   2.4.2 D > 0.5操作區間分析 25 第三章 串聯諧振轉換器動作原理 34 3.1 柔性切換技術 34 3.2 理想R-L-C串聯電路 35 3.3 全橋串聯諧振轉換器動作分析 36   3.3.1 SRC諧振區間動作模式 38   3.3.2 全橋串聯諧振轉換器參數分析 43 第四章 降壓型轉換器動作原理 47 4.1 降壓型轉換器基本應用與架構原理介紹 47 4.2 降壓型轉換器動作分析 47   4.2.1 第一操作區間(t0~t1) 48   4.2.2 第二操作區間(t1~t2) 49 第五章 電路設計 51 5.1 兩相交錯式功率因數修正電路設計 51   5.1.1 電路規格 51   5.1.2 功率元件設計 51   5.1.3 控制級元件設計 59 5.2 全橋串聯諧振轉換器電路設計 67   5.2.1 電路規格 68   5.2.2 功率元件設計 68   5.2.2 控制IC TL494介紹 74   5.2.3 控制級元件設計 77   5.2.5 設計定頻開迴路全橋串聯諧振轉換器增益曲線 78 5.3 降壓型定電流/定電壓轉換器電路設計 79   5.3.4 電路規格 79   5.3.5 功率元件設計 79   5.3.6 控制IC及周邊元件設計 82 第六章 模擬與實驗結果 86 6.1 兩相交錯式功率因數修正器模擬 86 6.2 定頻開迴路全橋串聯諧振轉換器模擬 91 6.3 降壓型定電流/定電壓雙模式轉換器模擬 93 6.4 兩相交錯式功率因數修正器實測波形與數據 94   6.4.1 實測波形 95   6.4.2 實測結果 98 6.5 定頻開迴路全橋串聯諧振轉換器實測波形與數據 101   6.5.1 實測波形 101   6.5.2 實測結果 104 6.6 降壓型定電流/定電壓雙模式轉換器實測波形與數據 105   6.6.1 實測波形 105   6.6.2 實測結果 107 6.7 整機實測結果 108 第七章 結論與未來展望 110 7.1 結論 110 7.2 未來展望 111 參考文獻 112

    參考文獻
    [1] C. C. Hua and M. Y. Lin, “A Study of Charging Control of Lead-acid Battery for Electric Vehicles,” ISIE 2000, pp. 135-140.
    [2] R. C. Cope and Y. Podrazhansky, “The Art of Battery Charging,” BCAA 1999, pp. 233-235.
    [3] S. Harrington and J. Dunlop, “Battery Charge Controller Characteristics in Photovoltaic Systems,” IEEE Aerospace Electronics System Magazine, vol. 7, no. 8, pp. 15-21, Aug. 1992.
    [4] T. S. Mundra and A. Kumar “An Innovative Battery Charger for Safe Charging of NiMH/NiCd Batteries,” IEEE Transactions on Consumer Electronics, vol. 53, no. 3, pp. 1044-1052, Aug. 2007.
    [5] F. Boico, B. Lehman, and K. Shujaee, “Solar Battery Chargers for NiMH Batteries,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1600-1609, Sept. 2007.
    [6] M. Gonzdez, F. J. Ferrero, J. C. Antbn, and M. A. Pkez “Considerations to Improve the Practical Design of Universal and Full-Effective NiCd/NiMH Battery Fast Chargers,” APEC 1999, pp. 167-173.
    [7] J. Diaz, J. A. Martin-Ramos, A. M. Pernia, F. Nuno, and F. F. Linera, “Intelligent and Universal Fast Charger for NiCd and NiMH Batteries in Portable Applications,” IEEE Transaction on Industrial Electronics, vol. 51, no. 4, pp. 857-863, Aug. 2004.
    [8] Y. S. Wong, W. G. Hurley, and W. H. Wolfle, “Temperature Compensation Algorithm for Interrupted Charge Control Regime for a VRLA Battery in Standby Applications,” APEC 2008, pp. 1278-1283.
    [9] 梁適安,高頻交換式電源供應器原理與設計,第二版,台北:全華圖書,1995年。(原著 G. Chryssis, 1984)
    [10] 梁適安,交換式電源供給器之理論與實務設計,第二版,台北:全華圖書,2008年。
    [11] EPARC,電力電子學綜論,第二版,台北:全華圖書,2008年。
    [12] T. Ishii and Y. Mizutani, “Power Factor Correction Using Interleaving Technique for Critical-Mode Switching Converter,” PESC 1998, pp. 905-910.
    [13] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductor,” IEEE Transactions on Industrial Electronic, vol. 47, no. 4, pp. 787-795, Aug. 2000.
    [14] J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor, and J. E. Baggio, “Control Strategy of an Interleaved Boost Power Factor Correction Converter,” PESC 1999, pp. 137-142.
    [15] H. G. Lei, X. J. Yang, H. L. Miao, and P. S. Ye, “Power Switch Deiving Techniques in Single-Phase Dual-Parallel Interleaved Boost PFC,” PEDS 2003, pp. 1086-1089.
    [16] R. Teodorescu, S. B. Kjaer, and S. Munk-Nielsen, F. Blaabjerg, “Comparative Analysis of Three Interleaved Boost Power Factor Corrected Topologies in DCM,” PESC 2001, pp. 3-7.
    [17] T. W. Heo, Y. D. Son, and E. Santi, “Analysis of the Interleaved Type Power Factor Correction Converter in Discontinuous Current Mode,” IECON 2004, pp. 2706-2711.
    [18] M. Veerachary, T. Senjyu, and K. Uezato, “Modeling and Analysis of Interleaved Dual Boost Converter,” ISIE 2001, pp. 718-722.
    [19] C. S. Babu and M. J. Veerachary, “Predictive Controller for Interleaved Boost Converter” ISIE 2005, pp. 577-581.
    [20] R. Martinez and P. N. Enjeti, “A High-Performance Single-Phase Rectifier with Input Power Factor Correction,” IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 311-317, Mar. 1996.
    [21] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single Phase Power Factor Correction:A Survey,” IEEE Transactions on Power Electronics, vol. 18, no 3, pp. 749-754, May 2003.
    [22] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of Low Frequency Harmonics for Continuous-Conduction-Mode Boost Power-Factor Correction,” IEE Proc. Electric Power Applicat., vol. 148, no. 2, pp. 202-206, Mar. 2001.
    [23] J. S. Lai and D. Chen, , “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” APEC 1993, pp. 267-273.
    [24] D. S. Chen and J. S. Lai, “A Study of Power Correction Boost Converter Operating at CCM-DCM Mode,” IEEE Southeastcon, 1993.
    [25] J. Luo, M. K. Jeoh, and H. C. Huang, “A New Continuous Conduction Mode PFC IC with Average Current Mode Control,” PEDS 2003, pp. 1110-1114.
    [26] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 328-335, Apr. 2003.
    [27] Texas Instruments Inc., “Using the UCC28070EVM,” User's Guide, 2008.
    [28] Texas Instruments Inc., “Interleaving Continuous Conduction Mode PFC Controller (UCC28070),” Datasheet, 2008.
    [29] Texas Instruments Inc., “Designing Switching Voltage Regulators With the TL494,” Datasheet, 2004.
    [30] ST Microwlwctronics, “L6561, Enhanced Transition Mode Power Factor Corrector,” Application Note, AN966, Mar. 2003.
    [31] P. C. Toff, “UC3854 Controlled Power Factor Correction Circuit Design,” Application Note, U-134.
    [32] Texas Instruments Inc., “Dual Operational Amplifiers,” Datasheet, May 2013.
    [33] Texas Instruments Inc., “Differential Comparaotrs with Strobes,” Datasheet, Aug. 2003.
    [34] K. C. Tseng, T. J. Liang, J. F. Chen, and M. T. Chang, “High Frequency Positive/Negative Pulse Charger with Power Factor Correction,” PESC 2002, pp. 671-675.
    [35] P. H. Cheng and C. L. Chen, “A High-Efficiency Fast Charger for Lead-Acid Batteries,” IECON 2002, pp. 1410-1415.

    無法下載圖示 全文公開日期 2015/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2015/07/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE