簡易檢索 / 詳目顯示

研究生: 吳宗翰
Tsung-Han Wu
論文名稱: 高功率密度15 kW全橋串聯諧振式轉換器研製
Design and Implementation of a 15 kW High Power-density Full-bridge Series-resonant Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 高功率密度全橋串聯諧振式轉換器碳化矽開關
外文關鍵詞: High Power Density, Full Bridge Series Resonant Converter, SiC MOSFET
相關次數: 點閱:250下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為高功率密度之全橋串聯諧振式轉換器探討與研製。由於顧慮到在高切換頻率下選用的碳化矽開關在沒有零電壓切換的情況下,可能因電路硬切產生的雜訊而影響到開關閘極電壓,導致開關誤動作讓電路損毀,所以本論文分析輸出電壓與零電壓導通的條件,並設計高切換頻率下的功率晶體、驅動電路、諧振槽、以及功率元件的散熱等需求。實驗規劃在約為300 kHz高切換頻率下輸出功率15 kW,並且探討實作時遇到的磁性元件的絞線的溫度影響。實驗結果顯示在輸出功率6 kW以上,效率皆可達到93 %以上,尤其在輸出功率高於9 kW皆能達到95 %的水準。本研究的轉換器尺寸長寬高為175  125  120 mm,操作於15 kW下,磁性元件溫度與功率晶體溫度皆能操作於容忍範圍內,功率密度可達5.7 W/cm3。


    This thesis focuses on the study and implementation of a high power- density full-bridge series-resonant converter. SiC MOSFETs operated under high switching-frequency may be affected by the noise induced by hard switching, which might result in malfunction and damage the power circuit. This thesis analyzes the requirement of ZVS operation with in a range of output voltage to facilitate the selection of power MOSFET, as well as gate driver, resonant tank and heat dissipation under high-frequency condition. The experiment is proceeded to supply 15 kW at 300 kHz switching frequency and investigate the heat effect on the wire of magnetic component. The experimental result shows that efficiency is 93 % under 6 kW load, and it reaches 95 % as load increase to 9 kW. The size of the converter is 175  125  120 mm. When operated at 15 kW power output, the temperature of the magnetic component and power MOSFETs are both under a tolerable level. As a result, the power density of this converter could as high as 5.7 W/cm3.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1研究動機 1 1.2全文內容編排方式 2 第二章 全橋串聯式諧振轉換器 4 2.1 RLC串聯式諧振電路 4 2.2全橋諧振式電路介紹 6 2.3全橋諧振式電路動作模式分析 11 第三章 轉換器電路設計 20 3.1 高頻切換功率晶體 21 3.2 高頻驅動電路設計 23 3.3 諧振槽設計 26 3.4輸出電容設計 39 3.5功率元件散熱係數設計 40 3.6電路佈局 43 第四章 高功率密度轉換器製作方法 46 4.1優化高頻變壓器線圈繞製方法 47 4.2優化諧振電感繞製方法 50 第五章 模擬與實驗成果 55 5.1電路模擬 56 5.2電路實測結果 57 5.3實驗數據 62 第六章 結論與未來展望 64 6.1結論 64 6.2未來發展方向 64 參考文獻 67

    [1] X. Li, and K. S. Bhat, “Analysis and Design of High-Frequency Isolated Dual-Bridge Series Resonant DC/DC Converter,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 850-862, April 2010.
    [2] 彭譽耀,交錯式半橋串聯諧振轉換器研製,國立台灣科技大學電子工程系碩士論文,2012年。
    [3] 蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器研製,國立台灣科技大學電子工程系碩士論文,2012年。
    [4] 謝士弘,LLC 半橋串聯諧振式轉換器之設計考量與研製,國立台
    灣科技大學電子工程系碩士論文,2007 年
    [5] B. Yang, F. C. Lee, A. J. Zhang, and G. S. Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” in Proc. IEEE APEC, pp.1108-1112, Mar. 2002.
    [6] FAIRCHILD, Analysis of MOSFET Failure Modes in LLC Resonant Converter,http://www.onsemi.com/pub/Collateral/AN-9067.pdfJP.pdf,2009.
    [7] FAIRCHILD, Half-Bridge LLC Resonant Converter Design Using FSFR-Series Fairchild Power Switch, http://www.onsemi.com/ pub/Collateral/AN-9067.pdfJP.pdf,2014.
    [8] S. Waffler, M. Preindl and J. W. Kolar, “Multi-objective optimization and comparative evaluation of Si soft-switched and SiC hard-switched automotive DC-DC converters,” Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE, pp 3814-3821, 2009.
    [9] S. Linder,“Potentials, Limitations, and Trends in High Voltage
    SiliconPower Semiconductor Devices,"Proc. ISPSD'08, pp.11-20,
    2008.
    [10] “C2M0040120D,” Data Sheet, CREE, 2014.
    [11] “1ED120N12AF,” Data Sheet, infineon, 2015.
    [12] “HCPL-3120,” Data Sheet, Avago Technologies, 2016.
    [13] “Si8233,” Data Sheet, SILOCON LABS, 2017.
    [14] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Edition. New York: John Wiley & Sons, 2003, pp. 249-297.
    [15] 吳義利,切換式電源轉換器,第二版,文笙書局股份有限公司,2015年,第6-17~6-25頁。
    [16] 黃喻鴻,運用於電源供應器中之多熱源散熱片最佳化設計,http://designer.mech.yzu.edu.tw/articlesystem/article/compressedfile/,2016年。
    [17] Tomohide Shirakawa, Genki Yamasaki, Kazuhiro Umetani, Eiji Hiraki “Copper Loss Analysis Based on Extremum CoEnergy Priciple for High Frequency Forward Transformers with Parallel-Connected Windings,” in Proc. IEEE IEEE Industrial Electronics Society, pp.1099-1101, 2015.
    [18] J. A. Ferreira “Appropriate Modelling of Conductive Losses in the Design of Magnetic components,” 21st Annual IEEE Conference on Power Electronics Specialists, 1990.
    [19] Wei Chen, Yipeng Yan, Yuequan Hu, and Qing Lu “Model and Design of PCB Parallel Winding for Planar Transformer,” IEEE Journals & Magazines,2003.
    [20] 百度文庫,磁路與電感計算,https://wenku.baidu.com/view
    /cf049b252f60ddccda38a059.html,2012年

    QR CODE