簡易檢索 / 詳目顯示

研究生: 蕭詠稜
Yung-leng Hsiao
論文名稱: 以距離感測器為基礎之室內同步定位與環境地圖實現
Range Sensor based Indoor SLAM Implementation
指導教授: 高維文
Wei-Wen Kao
口試委員: 陳亮光
Liang-kuang Chen
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 距離感測器同步定位與環境建圖擴展式卡爾曼濾波器
外文關鍵詞: range sensor, SLAM, Extended Kalman Filter
相關次數: 點閱:225下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是以距離感測器做為環境感知感測器的觀點出發,在室內環境中,提出一解決方法即將牆面視為一直線線段表示,故室內環境可視為很多條不同直線線段所代表之特徵牆面,而各特徵牆面所代表之直線方程式皆由不同參數所組合。將載具的位置及牆面直線方程式視為未知狀態,則可發展出一同步定位與環境建圖(SLAM)問題,並可利用載具之運動方程式推導狀態方程式。利用已知角度安裝的距離感測器測量載具到不同牆面的距離,可將距離量測量表為載具位置及特定牆面參數等狀態的非線性函數。

      利用擴展式卡爾曼濾波器理論,本論文完成載具位置及牆面參數等狀態的估測,針對室內環境實現以距離感測器為基礎之同步定位與環境建圖(SLAM)之技術,同時並在自建的實驗環境下以模擬及實際實驗分別驗證本論文所提方法的可行性,並討論在單一感測器及多感測器量測狀況下的狀態收斂特性。


    This research focus on the utilization of range sensor as environment sensing device and describes a new idea to represent the straight walls in indoor environment as straight line segments. The entire environment can then be represented by the set of line segment parameters from all walls . Use the wall parameters and the robot positions as unknown states, a Simultaneous Localization and Mapping (SLAM) problem can be formulated and state equation can be derived by using the robot motion equation. The distance measurements from range sensors installed in fixed angle on the robot to particular wall can be represented as a nonlinear function of the robot position and the wall parameter states.

    Using Extended Kalman Filter (EKF) nonlinear estimation theory, the robot position and the wall parameter states can be estimated and an indoor range sensors based SLAM technique is developed. A test environment is built and both simulation and real experiments are conducted to verify the validity of the proposed SLAM method. The state convergence properties using single sensor measurement versus multiple sensor measurements are discussed.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2 研究背景 1 1.3 研究目的與方法 2 1.4 文獻探討 3 1.5論文架構 4 第二章 理論基礎與背景 5 2.1 同步定位與環境建圖(SLAM) 5 2.1.1 以距離感測器為基礎 5 2.1.1.1 超音波感測器 5 2.1.1.2 紅外線感測器 6 2.1.1.3 雷射測距儀 6 2.1.2 以影像為基礎 7 2.1.3 感測器總結 7 2.2 卡爾曼濾波器 8 2.2.1 離散型卡爾曼濾波器(THE DISCRETE KALMAN FILTER) 8 2.2.2 擴展式卡爾曼濾波器(EXTENDED KALMAN FILTER) 11 第三章 系統架構 15 3.1 室內環境模型系統之建構 15 3.2資料擷取 16 3.2.1雷射測距儀 16 3.3 系統方程式推導 19 3.3.1 二維空間狀態方程式(STATE EQUATION) 20 3.3.2 量測方程式(MEASUREMENT EQUATION) 21 3.3.3 JACOBIAN矩陣計算 23 3.3.4 共變異數矩陣計算 25 第四章 系統模擬實驗與分析 27 4.1 平面座標轉換 28 4.2 單一方向量測點 29 4.2.1 量測點接近 29 4.2.2 量測點隨機分佈 29 4.3 多方向量測點 34 4.4 模擬實驗結果討論 40 第五章 定位實驗與結果 42 5.1 系統整合流程 42 5.2 系統構建 43 5.3 量測點設定 45 5.4 實驗結果 53 5.5 結果結論 68 第六章 結論與未來展望 71 6.1 結論 71 6.2 建議 71 6.3 未來展望 72 參考文獻 73

    參考文獻
    [1] H. Durrant-Whyte and T. Bailey,“Simultaneous Localisation and Mapping (SLAM):Part I The Essential Algorithms” ,Robotics and Automation Magazine, pp.99-110, June, 2006.
    [2] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and Mapping (SLAM):Part II State of the Art,” Robotics and Automation Magazine, pp. 108-117,September, 2006.
    [3] T. Bailey, “Mobile Robot Localization and Mapping in Extensive OutdoorEnvironments,” PhD Thesis, The University of Sydney, Australian Centre forField Robotics, 2002.
    [4] R.C. Smith and P, Cheeseman,”On the representation and estimation of spatial uncertainty, “ IJRR, vo1. 5, no.4, pp. 56-68, 1986
    [5] A.DiosiandL.Kleeman, “Laser scan matching in polar coordinateswith application to SLAM,” In Proceedings of IROS, pp. 1439–1444, 2005
    [6] M.Tomono, “A scan matching method using euclidean invariantsignature for global localization and map building,” In Proceedingsof ICRA, pp. 866–871, 2004
    [7] J. M. M Montiel, J. Civera, and A. J. Davison, “Unified Inverse Depth Parametrization for Monocular SLAM,” Robotics Science and Systems, RSS, Philadelphia, 2006
    [8] G. Farley and M. Chapman, “An Alternate Approach to GPS Denied Navigation based on Monocular SLAM Techniques,” ION National Technical Meeting, 2008.
    [9] Truong M. Dat, “Simultaneous localization and mapping based on vehicle model and laser range finder,” Master Thesis, The University of Science and Technology, Navigation lab, 2011
    [10] Teddy N. Yap, Jr. and Christian R. Shelton, “SLAM in large indoor environments with low-cost, noisy, and sparse sonars,” IEEE Int. Conf. on Robotics and Automation, pp. 1395-1401, 2009
    [11] R. G. Brown and P. Y . C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Willey&Sons, 3rd Ed., 1997.
    [12] J. Kim and S. Sukkarieh, “Airborne Simultaneous Localisation and Map Building,” IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, September 2003.
    [13] Young-Ho Choi, Tae-Kyeong Lee, Se-Young Oh, “A line feature based SLAM with low grade range sensors using geometric constraints and active exploration for mobile robot,” Springer Science+Business Media, LLC 2007
    [14] G.P. Huang, A.I. Mourilis, and S.I. Roumeliotis, “Analysis and Improved of the Consistency of Extended Kalman Filter-based SLAM,” IEEE Int. Conf. on Robotics and Automation, pp. 473-479,2008
    [15] Elmar A, Ruckert, “SimultaneorsLocalisation and Mapping for Mobile Robots with Recent Sensor Technologies,” Graz, Austria, December
    [16] http://sunrise.hk.edu.tw/~jhtong/file/Sensor/chapter_12.pdf
    [17] http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html
    http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/urg-04lx/data/URG-04LX_spec_en.pdf

    QR CODE