簡易檢索 / 詳目顯示

研究生: 黃文盛
Hoang,Van - Thanh
論文名稱: 混合PC/PMMA材料應用於LED照明元件射出成形研究
Study of PC/PMMA Blends for Injection Molding of Optical Elements in LED Illumination
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
李維禎
Wei-chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 182
中文關鍵詞: LED照明聚碳酸酯聚甲基丙烯酸甲酯抗拉強度衝擊強度全內反射式光學元件.
外文關鍵詞: PMMA/PC blends, TIR lens.
相關次數: 點閱:221下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在不久的將來,固態照明的發光二極體(LED)光源在照明應用領域將扮演一個舉足輕重的角色,現在有很多傳統的光源正漸漸地被LED光源所取代。為了能讓光源清楚地照亮目標平面,二次光學系統被廣泛地應用在照明光學元件中。另一方面,機械性能在光學元件中占有非常重要的因素。大多數單一的光學塑膠材料具有良好的強度和高韌性。本研究的目的是研究聚碳酸酯和聚甲基丙烯酸甲酯(PC/PMMA)混合後經由射出成形所造成的機械性能和光學性質的影響。經由實驗分析與混合方法,光學元件的機械性能將可被先行預測,並且元件的光學性能可先做初步的設計然後藉由射出模造成形確認。利用Taguchi的方法將可在拉伸與衝擊試驗中的最大拉伸強度找到最佳化射出參數。本研究亦將藉由材料的拉伸與衝擊試驗來探討熔點、保壓壓力、模具溫度和冷卻時間在射出成形之影響。實驗結果顯示,如要改進PC / PMMA材料在三種不同混合比例下的拉伸性質,熔點是最顯著的參數,保壓壓力和模具溫度分別為第二和第三大要素。特別的是將PC材料以80%混合比例於PC/PMMA材料中顯示,模具溫度是影響衝擊特性的最主要參數。PC成分的減少將讓PC/PMMA混合材料的抗拉強度增加;相反的,提高PC成分比例將會增加衝擊強度。在經過實驗驗證後,PC/PMMA混合材料的機械性能已獲得顯著改善。特別的是,將PC/ PMMA 以20/80、50/50與80/20之比例混合,其最終平均抗拉強度分別為 85.18MPa,79.19MPa,76.52MPa;而衝擊強度分別為 5974.26J/m2、6954.66 J/ m2與 8455.88J/ m2。本研究亦有PC / PMMA混合物製作全內反射光學元件(TIR Lens)的照明測試,此 TIR透鏡可視為二次光學元件。比較TIR透鏡在PC / PMMA三種不同混和比例的照明強度,結果顯示,PC / PMMA 以80/20比例混合其照度是最高的,而以 20/80、50/50比例混合照明強度依次遞減。本研究成果可用於LED光學元件之新材料選擇,未來可對
    高分子混合材料進行更深入的射出成形參數研究。


    Light-Emitting-Diodes (LEDs) are solid-state lighting sources that play a very important role now and future. Many traditional light sources are gradually being replaced by LEDs sources. In order to illuminate light from the new LED source on the desired illumination, the secondary optics have been used widely in LED illumination. Therefore, the mechanical properties are quite important factors in optical elements. Most single optical material does not have both good strength and high toughness. This study is to investigate the effects of injection molding parameters on mechanical properties and optical properties of Polycarbonate and Poly(methyl methacrylate) (PC/PMMA) blends. Mechanical properties can be first predicted by some models based on rules of mixture and then verified by experiments. Optical properties are also designed and confirmed by LED lens of injection molding. Taguchi’s method is used to find the optimal parameters for the maximum ultimate tensile strength and also the impact toughness. Performance of tensile and impact testing related to conditions, including melt temperature, packing pressure, mold temperature, and cooling time have been considered and discussed in this study. The ANOVA tables have been finished for determining the significance of injection molding parameters. Results of experiments show that the melt temperature is the most significant parameter. Packing pressure and mold temperature are the second and third significant parameters for improvement of tensile properties of PC/PMMA blends over three compositions. However, results of PC/PMMA blend with 80 % PC composition shows that mold temperature is the most significant parameter to the impact behavior. After experimental verification, the mechanical properties of the PC/PMMA blends have been improved significantly. In particular, average ultimate tensile strengths are 85.18 MPa, 79.19 MPa, and 76.52 MPa of PC/PMMA 20/80, 50/50, and 80/20 blends, respectively; impact toughness are 5974.26 J/m2, 6954.66 J/m2, and 8455.88 J/m2 of PC/PMMA 20/80, 50/50, 80/20 blends, respectively. Illumination testing of TIR lens made of PC/PMMA blends has been proceeded and the TIR lens illumination intensity is compared with three compositions of the PC/PMMA blends. Illumination results show that the PC/PMMA 80/20 blend has the highest brightness. Results of this study can be applied on the optimization of injection molding parameters for polymer blends of LED lens.

    ACKNOWLEDGEMENT I 摘 要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XII NOMENCLATURE XIV CHAPTER 1 INTRODUCTION 1 1.1 Background of the study 1 1.2 Objective and Scope 3 1.3 Approach 3 1.4 Dissertation overview 5 CHAPTER 2 LITERATURE REVIEW 6 2.1 Polymer blends 6 2.1.1 Miscibility of PC/PMMA blends by screw extrusion method 6 2.1.2 Mechanical properties of PC/PMMA blends by screw extrusion method 10 2.1.3 Optical properties of PC/PMMA blends 12 2.1.4 LED illumination with using TIR lens as secondary optics 17 2.2 Plastics fundamentals 20 2.2.1 General characters of plastic materials 20 2.2.2 Classification of plastics 21 2.2.3 Thermoplastics 21 2.2.4 Poly(methyl methacrylate) (PMMA) and Polycarbonate 25 2.2.5 Molecular weight and molecular weight distribution 28 CHAPTER 3 POLYMER BLENDS AND INJECTION MOLDING PROCESS 30 3.1 Polymer and polymer mixtures 30 3.2 Requirements of Polymer Blends 30 3.2.1 Glass transition temperature 31 3.2.2 Mechanical properties 31 3.2.3 De-molding quality 35 3.2.4 Optical properties of polymer blends 37 3.2.4.1 Refractive index 37 3.2.4.2 Transmittance 38 3.3 Injection molding process 42 3.3.1 Residual Stress 42 3.3.1.1 Flow-induced residual stress 42 3.3.1.2 Thermal-induced residual stress 43 3.3.2 Molding window 44 3.3.3 Process Model 45 CHAPTER 4 EXPERIMENTAL SET-UP AND METHODS 49 4.1 Materials preparation and blending 49 4.2 Injection molding machine and sample preparation 51 4.3 Design of experiments 53 4.4 Mechanical testing 58 4.5 Phase morphology analysis 59 4.6 Mold design for LED illumination system 60 4.7 Optical testing 61 CHAPTER 5 RESULTS AND DISCUSSIONS 63 5.1 Mechanical properties 63 5.1.1 Mechanical properties of PC/PMMA 20/80 Blend (blend A) 63 5.1.1.1 Tensile strength of PC/PMMA 20/80 blend 63 5.1.1.2 Impact strength of PC/PMMA 20/80 blend 65 5.1.2 Mechanical properties of PC/PMMA 50/50 Blend (blend B) 68 5.1.2.1 Tensile strength of PC/PMMA 20/80 blend 68 5.1.2.2 Impact strength of PC/PMMA 20/80 blend 70 5.1.3 Mechanical properties of PC/PMMA 80/20 Blend (blend C) 73 5.1.3.1 Tensile strength of PC/PMMA 20/80 blend 73 5.1.3.2 Impact strength of PC/PMMA 20/80 blend 75 5.1.4 Verification test 84 5.2 Optical properties 96 5.2.1 TIR lens and impact specimen illumination intensity testing 96 5.2.2 TIR lens and impact specimen illumination testing by visual inspection 103 CHAPTER 6 CONCLUSION AND RECOMMENDATON 110 6.1. Conclusions 110 6.2. Recommendations 110 REFERENCES 111 APPENDIX A MATLAB code program 116 APPENDIX B TENSILE TESTING OF PC/PMMA BLENDS 128 APPENDIX C IMPACT TESTING OF PC/PMMA BLENDS 143 APPENDIX D ILLUMINATION FUNDAMENTALS 145 APPENDIX E MOLD and INJECTION MOLDING MACHINE 157 CURRICULUM VITAE 162

    [1] Wikipedia. Light-Emitting-Diodes. Available: http://en.wikipedia.org/wiki/Light-emitting_diode
    [2] C. Dialight. Brochures and Catalogs in Illumination. Available: www.dialight.com/Assets/Brochures_And_Catalogs/Illumination/MDTFSFSTHB001
    [3] M. Hanney. (2009), Secondary Optics for LEDs.
    [4] C. C. Ibeh, Thermoplastic materials: Taylor and Francis Group, LLC, 2011.
    [5] W. A. Parkyn and D. G. Pelka, "New TIR Lens applications for light-emitting diodes," Proceedings of SPIE, vol. 3139, 1996.
    [6] J. F. V. Derlofske, "Computer modeling of LED light pipe systems for uniform display illumination," Steven P. DenBaars, Editors, Proceedings of SPIE, vol. 4445, 2001.
    [7] N. S. J. Bortz and M. Keuper, "Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source," Nonimaging Optics and Efficient Illumination Systems, Proceedings of SPIE, vol. 5529, 2004.
    [8] Z. J. Y. Zhen and W. Zhang, "The Optimal Design of TIR Lens for Improving LED Illumination uniformity and Efficiency," Optical Design and Testing III, Proc. of SPIE, vol. 6834, 2007.
    [9] X. H. Lee and C. C. Sun, "High efficiency LED street light using micro-lens array," Proceedings of SPIE, vol. 7786, 2010.
    [10] Y. Y. Chen, A. J. W. Whang, S. M. Chao, C. N. Chen, H. C. Hsiao, and X. D. Hu, "High uniform Illumination of light-emitting diodes lighting with applying the Multiple-curvature lens," Optical review, vol. 18, pp. 218-223, 2011.
    [11] K. Kogler, "Selection of plastics for optical application," Advanced materials and processes Technology, 1999.
    [12] G. H. Meeten, Optical Properties of Polymers: Elsevier Science Publishers, LTD, 1986.
    [13] C. TSM. Specification. Available: http://www.tsmcontrols.com/index.php/en/batchblending/optimix
    [14] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: Awiley-interscience Publication, 1998.
    [15] J. S. Chiou, J. W. Barlow, and D. R. Paul, "Miscibility of Bisphenol-A Polycarbonate with poly(Methy methacrylate)," Journal of polymer Science: Part B: Polymer Physics, vol. 25, pp. 1459-1471, 1987.
    [16] Z. G. Gardlund and M. A. K. Bator, "Polycarbonate-Poly(methyl Methacrylate) block copolymers: Synthesis and Characterization," Journal of Polymer Science: Polymer Chemistry Edition, vol. 21, pp. 1251-1261, 1983.
    [17] W. N. Kim and C. M. Burns, "Blends of Polycarbonate and Poly(methyl Methacrylate) and Determination of the polymer-polymer interaction parameter of two polymers," American Chemical Society: Macromolecules, vol. 20, 1987.
    [18] L. V. Adamova, A. A. Tager, I. N. Razinskaya, V. A. Izvozchikova, V. P. Lenedev, N. T. Nerush, and A. M. Kornev, "Thermodynamic stability of Poly(methyl methacrylate)-Polycarbonate blends. Effect of history and structure," Polymer Science U.S.S.R., vol. 30, pp. 1377-1381, 1988.
    [19] W. N. Kim and C. M. burns, "Phase behavior of blends of Polycarbonate with partially miscible polymers," Journal of Applied Polymer Science, vol. 41, pp. 1575-1593, 1990.
    [20] J. Kolarik and F. Lednicky, "Blends of polycarbonate with poly(methyl methacrylate): Miscibility, phase continuity, and Interfacial Adhesion," Polymer Engineering and Science, vol. 32, Mid-July 1992.
    [21] S. A. Xu and S. C. Tjong, "Tensile deformation mechanisms of the blends of Polycarbonate with Poly(Methyl methacrylate)," Eur. Polymer J., vol. 34, pp. 1143-1149, 1998.
    [22] D. Heikens, S. D. Sjoerdsma, and W. J. Coumans, Journal material Science, vol. 16, 1981.
    [23] J. Rybnicek, R. Lach, M. Lapcikova, J. Steidl, Z. Krulis, W. Grellmann, and M. Slouf, "Increasing recyclability of PC, ABS and PMMA: Morphology and Fracture behavior of Binary and Ternary blends," Journal of Applied polymer Science, vol. 109, pp. 3210-3223, 2008.
    [24] A. Tanaka, H. Sawada, and Y. Koijma, "Application of Poly(vinylidene fluoride) and Poly(methyl methacrylate) blends to optical material," Polymer Journal, vol. 22, pp. 463-467, 1990.
    [25] Y. Agari, A. Ueda, Y. Omura, and Y. Omura, "Thermal diffusivity and conductivity of PMMA/PC blends," Polymer Engineering and Science, vol. 38, pp. 801-807, 1997.
    [26] M. Okamoto, "Effect of Polycarbonate-Poly(Methyl methacrylate) Graft Copolymer as a modifier improving the surface hardness of polycarbonate," Journal of Applied Polymer Science, vol. 83, pp. 2774-2779, 2002.
    [27] D. T. Dias, R. Bonzanini, A. F. Rubira, E. C. Muniz, A. N. Medina, M. L. Baesso, L. A. O. Nunes, and A. C. Bento, "Photoacoustic characterization of PC/PMMA blends dopted with Eu(acac)3," J. Phys. IV France, vol. 125, pp. 387-390, 2005.
    [28] S. H. Deshmukh, D. K. Burghate, S. N. Shilakar, G. N. Chaudhari, and P. T. Deshmukh, "Optical Properties of polyaniline doped PVC-PMMA thin films," Indian Journal of Pure and Applied physics, vol. 46, pp. 344-348, May 2008.
    [29] R. M. Ahmed, "Optical Study on Poly(methylmethacrylate)/Poly(vinyl acetate) Blends," International Journal of Photoenergy, 2009.
    [30] J. H. Nahida and R. F. Marwa, "Study of the Optical Constants of the PMMA/PC Blends," Eng. & Tech. Journal, vol. 29, 2011.
    [31] Y. Li and H. Shimizu, "Fabrication of Nanostructured Polycarbonate/ Poly(methyl methacrylate) Blends With Improved Optical and Mechanical Properties by High-Shear Processing," Polymer Engineering and Science, 2011.
    [32] A. K. Singh, R. Prakash, and D. Pandey, "Reactive compatibilization of Polycarbonate and Poly(methyl methacrylate) in the presence of a Novel transesterification catalyst SnCl2.2H2O," J. Phys. Chem. B, vol. 115, pp. 1601-1607, 2011.
    [33] C. C. A. Chen, Computer aided mold design and analysis: Institute of ME/NTUST.
    [34] T. A. Osswald and J. P. Hernandez-Ortiz, Polymer Processing: Modeling and simulation. Munich: Hanser Publishers, 2006.
    [35] K. Kohlgruber, Co-rotating Twin-Screw extruders: Fundamentals, Technology, and Application. Munich: CarlHanser Publishers, 2008.
    [36] J. M. Margolis, Engineering Plastics Handbook: McGraw-Hill Handbooks, 2006.
    [37] M. Gale, Mixing in single screw extruder: iSmithers- A Smithers Group Company, 2009.
    [38] P. C. Painter and M. M. Coleman, Essentials of Polymer Science and Engineering: DEStech Publications, Inc., 2009.
    [39] Wikipedia. PMMA. Available: http://en.wikipedia.org/wiki/Poly(methyl_methacrylate)
    [40] D. J. Brunelle and M. R. Korn, Advanced in Polycarbonates. Washington: American Chemical Society, 2005.
    [41] Wikipedia. Polycarbonate. Available: http://en.wikipedia.org/wiki/Polycarbonate
    [42] CoreTech, "Moldex3D R10 software," CoreTech, Ed., ed. Taiwan, 1995-2010.
    [43] IDES. Datasheet of polymer materials. Available: http://www.ides.com/
    [44] H. Ulrich, Introduction to Industrial Polymers. New York, 1993.
    [45] W. J. Work, "Definitions of terms related to polymer blends, composites, and multiphase polymeric materials," Pure and Applied Chemistry, IUPAC, vol. 76, 2004.
    [46] A. Leszek, Polymer Alloys and Blends - Thermodynamics and Rhelogy. New York: Hanser publisher S., 1989.
    [47] J. A. Manson and L. H. Sperling, Polymer Blends and composites. Plenum Press New York and London, 1976.
    [48] L. E. Nielsen and R. F. Landel, Mechanical properties of Polymer and Composites. New York: Marcel Dekker.
    [49] E. H. Kerner, Proc. phys. Soc., vol. 69B, p. 808, 1956.
    [50] L. W. Kleiner, F. E. Karasz, and W. J. MacKnight, "Polymer Engineering Science," vol. 19, p. 519, 1979.
    [51] U. o. Cambridge. Rules of mixture. Available: http://www.doitpoms.ac.uk/tlplib/bones/derivation_mixture_rules.php
    [52] Wikipedia. Molar refractivity. Available: http://en.wikipedia.org/wiki/Molar_refractivity
    [53] F. W. Billmeye and M. Saltzman, Principles of color Technology, second edition ed. New York: John Wiley and Sons, 1981.
    [54] M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of light by Small Particles. New York: Goddard Institute for Space Studies, 2004.
    [55] Wikipedia. Rayleigh Scattering. Available: http://en.wikipedia.org/wiki/Rayleigh_scattering
    [56] Wikipedia. Shrinkage and warpage. Available: http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/process/physics/b3500001.htm
    [57] M. Dixit, V. Shaktawat, K. Sharma, N. S. Saxena, and T. P. Sharma, "Mechanical characterization of Polymethyl Methacrylate and Polycarbonate Blends," AIP Conf. Proc., vol. 1004, pp. 311-315, 2008.
    [58] M. Dixit, V. Mathur, S. Gupta, M. Baboo, K. Sharma, and N. S. Saxena, "Morphology, miscibility and mechanical properties of PMMA/PC blends," Phase Transitions, vol. 82, pp. 866-878, 2009.
    [59] P. J. Ross, Taguchi techniques for quality engineering, 2nd edition ed.: McGraw-Hill, 1996.
    [60] P. M. L. Lab., "Mold design," P. m. Lab., Ed., ed. ME/NTUST.
    [61] V. R. Dominick, V. R. Donald, and G. R. Marlene, Injection molding handbook, 3rd ed.: Kluwer Academic Publishers, 2000.
    [62] J. M. Fischer, Handbook of molded part shrinkage and warpage: William Andrew, 2003.
    [63] Wikipedia. Light fundamentals. Available: http://en.wikipedia.org/wiki/Light
    [64] M. S. Rea, IESNA lighting Handbook: Reference and application, 9th edition ed. New York: Illuminating Engineering Society of North America, 2000.
    [65] A. Ryer, Light Measurement Handbook: International Light Inc., 1998.
    [66] J. M. Pasachoff and R. Wolfson, Physics for scientists and Engineers, 3rd edition ed.: Reading, MA, 1999.
    [67] C. L. LEDs. LEDs Catalog. Available: http://www.lc-led.com/Products/department/29

    QR CODE