簡易檢索 / 詳目顯示

研究生: 何羽庭
Yu-Ting He
論文名稱: 聚甲基丙烯酸甲酯奈米泡材發泡行為探討
Foaming Behavior of Poly(methyl methacrylate) Nanocellular Foam
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 鄭智嘉
Chih-Chia Cheng
蘇至善
Chie-Shaan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 138
中文關鍵詞: 奈米泡孔材料聚甲基丙烯酸甲酯二步發泡分子量溶解度
外文關鍵詞: nanocellular material, poly(methyl) methacrylate, solid state foaming, molecular weight, solubility
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發泡材料一直是高分子材料中極為重視的領域,近年來,奈米發泡材料因為在絕熱和結構上的獨特性質,受到了各界的矚目。本研究使用單分子量分布聚甲基丙烯酸甲酯(PMMA),以批式發泡法製備奈米發泡材料,使系統變數降至最少,以達到學術分析的目的。
    本研究比較不同分子量PMMA,在固定含浸壓力13.79 MPa (2000 psi)下,改變含浸與發泡溫度,觀察探討發泡後的泡孔型態。第一部分,本實驗對泡孔型態和其含浸與發泡溫度整理出圖表,並比較分子量對於發泡型態的影響,此部份我們成功以CO2 %約為 25.9 wt%,製備出孔徑約100 nm的奈米泡材。第二部分,我們對PMMA/CO2系統進行溫度掃描實驗的定性觀察,並依據泡孔形態繪出其相圖,發現形成開孔泡的原因可能不完全是成核成長後發生的泡壁破裂而開孔,也有可能為調幅分解(spinodal decomposition)形成的開孔泡。
    第三部分,我們進行擴散係數以及殼層等理論分析,因發泡過程中,二氧化碳會在洩壓同時擴散出高分子,而造成樣品有不同濃度的二氧化碳分布,使得泡材存在著固態表層、過渡層以及核心層三部分,本實驗找出此三部分與發泡條件之間的關係,並試著透過計算,獲得過渡層與核心層的密度,最後,我們比較了商用PMMA與本實驗使用的單分子量分布PMMA其發泡結果。


    Polymeric foam materials have always been an area of great importance in polymer materials. In recent years, nanocellular foam have attracted enormous attention because of their unique properties in thermal insulation and structure. In this study, a single molecular weight distribution poly(methyl methacrylate) (PMMA) was used to prepare nanocellular foam materials by the solid state batch foaming method . We compared PMMA with different molecular weights, changed the saturated temperature (Tsat) and foaming temperature (Tfoam) at a fixed saturated pressure (Psat), and observed the cell morphology of the foam. Nanocellular foam with a cell size of about 100 nm with a CO2 % of about 25.9% was successfully prepared using PMMA with a molecular weight of 350,000.

    摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 第二章 文獻回顧 3 2-1 聚甲基丙烯酸甲酯 poly (methyl methacrylate) 3 2-2 高分子發泡材料 4 2-2-1 發泡劑製備法 6 2-2-2 物理發泡劑-二氧化碳製備高分子泡材 8 2-2-3 固態發泡法造成的殼層結構 20 2-3 高分子奈米泡料 23 2-3-1 物理性質 23 2-3-2 奈米泡孔計算 33 2-4泡孔生成機制 35 2-4-1 成核成長(Nucleation and Growth) 39 2-4-2 調幅分解(Spinodal Decomposition) 43 2-5泡孔型態 45 第三章 實驗方法 47 3-1 實驗藥品 47 3-2 實驗儀器 49 3-3 實驗步驟與流程 51 3-3-1 混煉加工成型 52 3-3-2 溶解度量測 52 3-3-3 平衡溶解度量測 53 3-3-4 批式發泡 53 3-3-5 Tg點推算(最低發泡溫度法) 54 3-4 測量方法 56 3-4-1 熔融指數分析儀(Melt Flow Index, MFI) 56 3-4-2 示差掃描量熱儀(DSC) 56 3-4-3 泡材密度(foam density)量測 57 3-4-4 場發射雙束型聚焦離子束顯微鏡(FIB) 57 3-4-5 泡孔孔徑(cell size)計算 57 3-4-6 泡孔密度(cell density)計算 58 第四章 結果與討論 59 4-1 材料性質分析 59 4-2 擴散係數計算 60 4-3 含浸溫度對發泡材之影響 64 4-3-1 溶解度與含浸溫度關係 64 4-3-2 溶解度對玻璃轉移溫度(Tg)影響與推算 65 4-3-3 CO2溶解度對泡孔結構影響 73 4-3-4 分子量對泡孔結構影響 74 4-4 奈米泡材的臨界溶解度 78 4-5 PMMA/CO2相圖 81 4-6 殼層密度 87 4-7 發泡材之DSC測量結果 95 4-8 與商用PMMA之比較 96 第五章 結論 100 參考文獻 101 附錄A 不同發泡時間實驗結果 114 附錄B PMMA-120K發泡實驗結果 116 附錄C PMMA-15K發泡實驗結果 120

    1. S. K. Goel and J. E. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation. Polymer Engineering & Science, 1994. 34(14): p. 1137-1147.
    2. W. J. Koros, Simplified analysis of gas/polymer selective solubility behavior. Journal of Polymer Science: Polymer Physics Edition, 1985. 23(8): p. 1611-1628.
    3. 廖宗恩, 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材, 碩士論文 國立台北科技大學: 化學工程與生物科技系, 2016.
    4. S. Costeux, I. Khan, S. P. Bunker and H. K. Jeon, Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics, 2014. 51(2): p. 197-221.
    5. B. Aher, N. M. Olson and V. Kumar, Production of bulk solid-state PEI nanofoams using supercritical CO2. Journal of Materials Research, 2013. 28(17): p. 2366-2373.
    6. P. S. Malcom, Polymer Chemistry: An Introduction. 3rd ed. Oxford University Press: NY, 1999: p. 167–176 and p. 256–276.
    7. M. M. Demir, M. Memesa; P. Castignolles and G. Wegner, PMMA/zinc oxide Nanocomposites prepared by in-situ bulk polymerization. Macromolecular Rapid Communications, 2006: p. 27 (10), 763–770.
    8. U. Ali, K. J. B. A. Karim and N. A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
    9. L. H. Lee and W. C. Chen, High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)−titania materials. Chemistry of Materials, 2001. 13(3): p. 1137-1142.
    10. B. Adhikari and S. Majumdar, Polymers in sensor applications. Progress in Polymer Science, 2004. 29: p. 699-766.
    11. J. J. Shah, J. Geist, L. E. Locascio, M. Gaitan, M. V. Rao and W. N. Vreeland, Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis, 2006. 27(19): p. 3788-3796.
    12. H. Hashim, N. I. Adam, N. H. M. Zaki, Z. S. Mahmud, C. M. S. Said, M. Z. A. Yahya and A. M. M. Ali, Natural rubber-grafted with 30% poly(methylmethacrylate) characterization for application in lithium polymer battery. International Conference on Science and Social Research, 2010. p. 485-488. Kuala Lumpur, Malaysia.
    13. M. Reggente, P. Masson, C. Dollinger, H. Palkowski, S. Zafeiratos, L. Jacomine, D. Passeri, M. Rossi, N. E. Vrana, G. Pourroy and A. Carradò, Novel alkali activation of titanium substrates to grow thick and covalently bound PMMA Layers. ACS Applied Materials and Interfaces, 2018. 10(6): p. 5967-5977.
    14. H. Yang, X. Wang, L. Song, B. Yu, Y. Yuan, Y. Hu and R. K. K. Yuen, Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams. Polymers for Advanced Technologies, 2014. 25(9): p. 1034-1043.
    15. Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Advances, 2015. 5(31): p. 24342-24351.
    16. B. Oktay, N. Kayaman-Apohan, S. Erdem-Kuruca and M. Süleymanoğlu, Fabrication of collagen immobilized electrospun poly (vinyl alcohol) scaffolds. Polymers for Advanced Technologies, 2015. 26(8): p. 978-987.
    17. G. Wang, J. Zhao, G. Wang, L. H. Mark, C. B. Park and G. Zhao, Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017. 95: p. 382-393.
    18. T. Sadik, C. Pillon, C. Carrot, J. a. R. Ruiz, M. Vincent and N. Billon, Polypropylene structural foams: Measurements of the core, skin, and overall mechanical properties with evaluation of predictive models. Journal of Cellular Plastics, 2017. 53(1): p. 25-44.
    19. Polymer Foam Market by Type (PU, PS, PO, PVC, Phenolic, Melamine), End-Use Industry (Building & Construction, Packaging, Automotive, Furniture & Bedding, Footwear, Sports & Recreational), and Region - Global Forecast to 2022 : marketsandmarkets.com.
    20. J. Pinto, M. Dumon and M. A. Rodriguez-Perez, Nanoporous polymer foams from nanostructured polymer blends: Preparation, characterization, and properties, in Recent Developments in Polymer Macro, Micro and Nano Blends. edited by G. Markovic and D. Pasquini, Woodhead Publishing, Sawston, Cambridge 2017 p. 237-288.
    21. V. Kumar amd N. P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering & Science, 1990. 30(20): p. 1323-1329.
    22. D. Klempner and V. Sendijarevic, Polymeric Foams and Foam Technology 2nd edition, Hanser Publisher, Munich 2004
    23. S. Costeux and L. Zhu, Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer, 2013. 54(11): p. 2785-2795.
    24. B. Chang, H. Yin, X. Zhang, S. Zhang and B. Yang, Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chemical Engineering Journal, 2017. 312: p. 191-203.
    25. L. Grassberger, K. Koch, R. Oberhoffer, A. Müller, H. F. M. Klemmer and R. Strey, Blowing agent free generation of nanoporous poly(methylmethacrylate) materials. Colloid and Polymer Science, 2017. 295(2): p. 379-389.
    26. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2013. 5(7): p. 2677-2684.
    27. J. Reignier and M. A. Huneault, Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer, 2006. 47(13): p. 4703-4717.
    28. T. Qiang, C. Wang, M. Q. Liu, K. K. Adhikari, J. G. Liang, L. Wang, Y. Li, Y. M. Wu, G. H. Yang, F. Y. Meng, J. H. Fu, Q. Wu, N. Y. Kim and Z. Yao, High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sensors and Actuators, B: Chemical, 2018. 258: p. 704-714.
    29. Y. J. Lee, J. M. Huang, S. W. Kuo and F. C. Chang, Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles. Polymer, 2005. 46(23): p. 10056-10065.
    30. G. Rizvi, L. M. Matuana and C. B. Park, Foaming of PS/wood fiber composites using moisture as a blowing agent. Polymer Engineering and Science, 2000. 40(10): p. 2124-2132.
    31. S. Quinn, Chemical blowing agents: providing production, economic and physical improvements to a wide range of polymers. Plastics, Additives and Compounding, 2001. 3(5): p. 16-21.
    32. L. Chen, D. Rende, L. S. Schadler and R. Ozisik, Polymer nanocomposite foams. Journal of Materials Chemistry A, 2013. 1(12): p. 3837-3850.
    33. L. E. Manzer, An overview of the commercial development of chlorofluorocarbon (CFC) alternatives. Catalysis Today, 1992. 13(1): p. 13-22.
    34. S. T. Lee, C. B. Park and N. S. Ramesh, Polymeric foams: science and technology. CRC Press, Boca Raton, FL, 2006.
    35. Foam Update News Letter, July, 2017 editorial, edited by S. T. Lee
    36. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima and H. Masuoka, Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 1996. 125(1-2): p. 129-138.
    37. B. I. Chaudhary and A. I. Johns, Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene. Journal of Cellular Plastics, 1998. 34(4): p. 312-328.
    38. J. E. Martini-Vvedensky, N. P. Suh and F. A. Waldman, Microcellular closed cell foams and their method of manufacture, US 4473665, 1984.
    39. V. Kumar, Microcellular polymers: Novel materials for the 21st century. Progress in rubber and plastics technology, 1993. 9(1): p. 54-70.
    40. M. Shimbo, D. F. Baldwin and N. P. Suh, The viscoelastic behavior of microcellular plastics with varying cell size. Polymer Engineering & Science, 1995. 35(17): p. 1387-1393.
    41. V. Kumar, M. Vanderwel, J. Weller and K. A. Seeler, Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, 1994. 116(4): p. 439-445.
    42. M. Shimbo, I. Higashitani and Y. Miyano, Mechanism of strength improvement of foamed plastics having fine cell. Journal of Cellular Plastics, 2007. 43(2): p. 157-167.
    43. K. Nadella and V. Kumar, Tensile and flexural properties of solid-state microcellular abs panels. 2007. Dordrecht: Springer Netherlands.
    44. J. E. Martini, The production and analysis of microcellular foam. Department of Mechanical Engineering, MS thesis, Massachusetts Institute of Technology, 1981.
    45. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
    46. S. Costeux and D. Foether. Continuous extrusion of nanocellular foam. in Annual Technical Conference – ANTEC, Conference Proceedings, 2015. p. 2740-2745. Orlando, FL.
    47. K. Okamoto, Microcellular Processing. 2003: Hanser Gardner Publications, Cincinnati.
    48. M. A. Shafi, K. Joshi and R. W. Flumerfelt, Bubble size distributions in freely expanded polymer foams. Chemical Engineering Science, 1997. 52(4): p. 635-644.
    49. D. M. Newitt and K. E. Weale, Solution and diffusion of gases in polystyrene at high pressures. Journal of the Chemical Society (Resumed), 1948: p. 1541-1549.
    50. A. Wong, H. Guo, V. Kumar, C. B. Park and N. P. Suh, Microcellular Plastics, in Encyclopedia of Polymer Science and Technology. 2016. p. 1-57.
    51. M. Pantoula and C. Panayiotou, Sorption and swelling in glassy polymer/carbon dioxide systems. Journal of Supercritical Fluids, 2006. 37(2): p. 254-262.
    52. J. Pinto, J. A. Reglero-Ruiz, M. Dumon and M. A. Rodriguez-Perez, Temperature influence and CO2 transport in foaming processes of poly(methyl methacrylate)–block copolymer nanocellular and microcellular foams. Journal of Supercritical Fluids, 2014. 94: p. 198-205.
    53. H. Guo and V. Kumar, Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part I: Low-temperature CO2 sorption, diffusion, and the depression in PMMA glass transition. Polymer, 2015. 57: p. 157-163.
    54. J. Crank, The Mathematics of Diffusion 2nd edition, Gloucestershire. Clarendon Press, 1975.
    55. H. Guo and V. Kumar, Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer, 2015. 56: p. 46-56.
    56. M. Outokesh, F. Grayeli, A. Tayyebi and A. Khanchi, Modification of square root formula for approximate estimation of diffusion coefficient of particulate adsorbents. in ICCCE 2010 - 2010 International Conference on Chemistry and Chemical Engineering, Proceedings. 2010. Kyoto, Japan.
    57. M. Huang, L. B. Tunnicliffe, A. G. Thomas and J. J. C. Busfield, The glass transition, segmental relaxations and viscoelastic behaviour of particulate-reinforced natural rubber. European Polymer Journal, 2015. 67: p. 232-241.
    58. C. C. Hu, C. Y. Tu, Y. C. Wang, C. L. Li, K. R. Lee and J. Y. Lai, Effects of plasma treatment on CO2 plasticization of poly(methyl methacrylate) gas‐separation membranes. Journal of Applied Polymer Science, 2004. 93(1): p. 395-401.
    59. J. S. Chiou, J. W. Barlow and D. R. Paul, Plasticization of glassy polymers by CO2. Journal of Applied Polymer Science, 1985. 30(6): p. 2633-2642.
    60. T. S. Chow, Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules, 1980. 13(2): p. 362-364.
    61. R. G. Wissinger and M. E. Paulaitis, Glass transitions in polymer / CO2 mixtures at elevated pressures. Journal of Polymer Science Part B: Polymer Physics, 1991. 29(5): p. 631-633.
    62. P. D. Condo and K. P. Johnston, In situ measurement of the glass transition temperature of polymers with compressed fluid diluents. Journal of Polymer Science Part B: Polymer Physics, 1994. 32(3): p. 523-533.
    63. P. D. Condo, I. C. Sanchez, C. G. Panayiotou and K. P. Johnston, Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents. Macromolecules, 1992. 25(23): p. 6119-6127.
    64. Y. P. Handa and Z. Zhang, New technique for measuring retrograde vitrification in polymer-gas systems and for making ultramicrocellular foams from the retrograde phase. Journal of Polymer Science, Part B: Polymer Physics, 2000. 38(5): p. 716-725.
    65. B. Krause, R. Mettinkhof, N. F. A. Van Der Vegt and M. Wessling, Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules, 2001. 34(4): p. 874-884.
    66. D. Miller, P. Chatchaisucha and V. Kumar, Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure. Polymer, 2009. 50(23): p. 5576-5584.
    67. V. Kumar and J. E. Weller, A model for the unfoamed skin on microcellular foams. Polymer Engineering & Science, 1994. 34(3): p. 169-173.
    68. S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polymer Engineering & Science, 1994. 34(14): p. 1148-1156.
    69. C. Thiagarajan, G. Chatterjee, R. Sriraman, S. K. Rajendran and A. Vaidyalingam, Polymeric foams with nanocellular morphology and methods for making them, US 7838108 B2, 2010.
    70. S. A. Hosseini and H. V. Tafreshi, On the importance of fibers' cross-sectional shape for air filters operating in the slip flow regime. Powder Technology, 2011. 212(3): p. 425-431.
    71. C. Forest, P. Chaumont, P. Cassagnau, B. Swoboda and P. Sonntag, Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science, 2015. 41: p. 122-145.
    72. S. S. Sundarram and W. Li, On thermal conductivity of micro- and nanocellular polymer foams. Polymer Engineering and Science, 2013. 53(9): p. 1901-1909.
    73. B. Notario, J. Pinto, E. Solorzano, J. A. De Saja, M. Dumon and M. A. Rodríguez-Pérez, Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer (United Kingdom), 2015. 56: p. 57-67.
    74. G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park and G. Zhao, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017. 9(18): p. 5996-6009.
    75. J. A. Reglero Ruiz, M. Dumon, J. Pinto and M. A. Rodriguez-Pérez, Low-density nanocellular foams produced by high-pressure carbon dioxide. Macromolecular Materials and Engineering, 2011. 296(8): p. 752-759.
    76. J. Pinto, B. Notario, R. Verdejo, M. Dumon, S. Costeux and M. A. Rodriguez-Perez, Molecular confinement of solid and gaseous phases of self-standing bulk nanoporous polymers inducing enhanced and unexpected physical properties. Polymer, 2017. 113: p. 27-33.
    77. L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties. 2nd ed. Cambridge solid state science series. 1997, Cambridge; New York: Cambridge University Press.
    78. J. D. Mcrae, H. E. Naguib and N. Atalla, Mechanical and acoustic performance of compression-molded open-cell polypropylene foams. Journal of Applied Polymer Science, 2010. 116(2): p. 1106-1115.
    79. B. Notario, J. Pinto and M. A. Rodríguez-Pérez, Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer, 2015. 63: p. 116-126.
    80. Q. Chen and N. M. Pugno, Mechanics of hierarchical 3-D nanofoams. Europhysics Letters, 2012. 97(2): p. 26002.
    81. J. Martín-De León, V. Bernardo and M. Ñ. Rodríguez-Pérez, Key Production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering, 2017. 302(12).
    82. B. Notario, A. Ballesteros, J. Pinto and M. A. Rodríguez-Pérez, Nanoporous PMMA: A novel system with different acoustic properties. Materials Letters, 2016. 168: p. 76-79.
    83. B. Notario, J. Pinto, R. Verdejo and M. A. Rodríguez-Pérez, Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale. Polymer, 2016. 107: p. 302-305.
    84. C. J. R. Sheppard and T. Wilson, Depth of field in the scanning microscope. Optics Letters, 1978. 3(3): p. 115-117.
    85. I. Vukovic, G. T. Brinke and K. Loos, Block copolymer template-directed synthesis of well-ordered metallic nanostructures. Polymer, 2013. 54(11): p. 2591-2605.
    86. J. Pinto, M. Dumon, M. Pedros, J. Reglero and M. A. Rodriguez-Perez, Nanocellular CO2 foaming of PMMA assisted by block copolymer nanostructuration. Chemical Engineering Journal, 2014. 243: p. 428-435.
    87. Y. Tokudome, K. Fujita, K. Nakanishi, K. Miura and K. Hirao, Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol−gel process accompanied by phase separation. Chemistry of Materials, 2007. 19(14): p. 3393-3398.
    88. C. Zhao and Y. Qiao, Characterization of nanoporous structures: From three dimensions to two dimensions. Nanoscale, 2016. 8(40): p. 17658-17664.
    89. S. Costeux, CO2-blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131(23): 41293.
    90. L. Robeson, Historical perspective of advances in the science and technology of polymer blends. Polymers, 2014. 6(5): p. 1251-1265.
    91. H. Guo, A. Nicolae and V. Kumar, Solid-state poly(methyl methacrylate) (PMMA) nanofoams. Part II: Low-temperature solid-state process space using CO2 and the resulting morphologies. Polymer, 2015. 70: p. 231-241.
    92. S. Sarkar, S. Banerjee, S. Roy, R. Ghosh, P. P. Ray and B. Bagchi, Composition dependent non-ideality in aqueous binary mixtures as a signature of avoided spinodal decomposition. Journal of Chemical Sciences, 2015. 127(1): p. 49-59.
    93. T. Inoue, Reaction-induced phase decomposition in polymer blends. Progress in Polymer Science, 1995. 20(1): p. 119-153.
    94. I. W. Hamley, Introduction to soft matter: Synthetic and biological self-assembling materials, 2008. Wiley, New York City, United States.
    95. Y. Kim, C. B. Park, P. Chen and R. B. Thompson, Origins of the failure of classical nucleation theory for nanocellular polymer foams. Soft Matter, 2011. 7(16): p. 7351-7358.
    96. A. Wong, In situ observation of plastic foaming under static condition. Extensional Flow and Shear Flow. PhD Dissertation, University of Toronto, Mechanical and Industrial Engineering, 2012.
    97. J. W. Cahn, Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics, 1965. 42(1): p. 93-99.
    98. K. B. Rundman and J. E. Hilliard, Early stages of spinodal decomposition in an aluminum-zinc alloy. Acta Metallurgica, 1967. 15(6): p. 1025-1033.
    99. L. P. Mcmaster, Chapter 5, Aspects of liquid-liquid phase transition phenomena in multicomponent polymeric systems, in Copolymers, Polyblends, and Composites. Copolymers, Polyblends, and Composites, pp 43–65, American Chemical Society 1975.
    100. M. Hatanaka and H. Saito, In-situ investigation of liquid−liquid phase separation in polycarbonate/carbon dioxide system. Macromolecules, 2004. 37(19): p. 7358-7363.
    101. M. Liu, S. Liu, Z. Xu, Y. Wei and H. Yang, Formation of microporous polymeric membranes via thermally induced phase separation: A review. Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 57-75.
    102. C. M. Stafford, T. P. Russell and T. J. Mccarthy, Expansion of polystyrene using supercritical carbon dioxide:  effects of molecular weight, polydispersity, and low molecular weight components. Macromolecules, 1999. 32(22): p. 7610-7616.
    103. P. C. Hiemenz and T. P. Lodge, Polymer Chemistry, 2nd Edition. 2007: CRC Press.
    104. M. Pantoula, J. Von Schnitzler, R. Eggers and C. Panayiotou, Sorption and swelling in glassy polymer/carbon dioxide systems Part II—Swelling. Journal of Supercritical Fluids, 2007. 39(3): p. 426-434.
    105. P. G. Crank J, Diffusion in polymers, 1968. London: Academic Press.
    106. Y. P. Handa, Z. Zhang and B. Wong, Solubility, diffusivity, and retrograde vitrification in PMMA-CO2, and development of sub-micron cellular structures. Cellular Polymers, 2001. 20(1): p. 1-16.
    107. E. Jenckel and R. Heusch, Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel. Kolloid-Zeitschrift, 1953. 130(2): p. 89-105.
    108. G. Manfred and T. J. S., Ideal copolymers and the second‐order transitions of synthetic rubbers. i. non‐crystalline copolymers. Journal of Applied Chemistry, 1952. 2(9): p. 493-500.
    109. T. G. Fox, Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bulletin American Physical Society, 1952. 1: p. 123.
    110. J. M. Rodriguez-Parada and V. Percec, Interchain electron donor-acceptor complexes: a model to study polymer-polymer miscibility? Macromolecules, 1986. 19(1): p. 55-64.
    111. B. Georges and P. H. Rober E., Miscibility of polycaprolactone/chlorinated polyethylene blends. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(2): p. 191-203.
    112. M. K. Ioannis and B. Witold, Glass transition temperatures in binary polymer blends. Journal of Polymer Science Part B: Polymer Physics, 2009. 47(1): p. 80-95.
    113. I. C. Sanchez and R. H. Lacombe, Statistical thermodynamics of polymer solutions. Macromolecules, 1978. 11(6): p. 1145-1156.
    114. C. Panayiotou and J. H. Vera, Statistical thermodynamics of r-mer fluids and their mixtures. Polymer Journal, 1982. 14: p. 681.
    115. J. H. Gibbs and E. A. Dimarzio, Nature of the glass transition and the glassy state. Journal of Chemical Physics, 1958. 28(3): p. 373-383.
    116. R. Souda, Glass−liquid transition of carbon dioxide and its effect on water segregation. Journal of Physical Chemistry B, 2006. 110(36): p. 17884-17888.
    117. L. An, D. He, J. Jing, Z. Wang, D. Yu, B. Jiang, Z. Jiang and R. Ma, Effects of molecular weight and interaction parameter on the glass transition temperature of polystyrene mixtures and its blends with polystyrene/poly (2,6-dimethyl-p-phenylene oxide). European Polymer Journal, 1997. 33(9): p. 1523-1528.
    118. K. Liu and E. Kiran, Kinetics of pressure-induced phase separation (PIPS) in solutions of polydimethylsiloxane in supercritical carbon dioxide: crossover from nucleation and growth to spinodal decomposition mechanism. Journal of Supercritical Fluids, 1999. 16(1): p. 59-79.
    119. X. Xu, D. E. Cristancho, S. Costeux and Z. G. Wang, Density-functional theory for polymer-carbon dioxide mixtures: a perturbed-chain SAFT approach. Journal of Chemical Physics, 2012. 137(5): p. 054902.
    120. J. Pinto, S. Pardo, E. Solorzano, M. A. Rodriguez-Perez, M. Dumon and J. A. De Saja, Solid skin characterization of PMMA/MAM foams fabricated by gas dissolution foaming over a range of pressures, in Defect and Diffusion Forum. 2012. p. 434-439.
    121. Fourier Law, Solving direct and inverse heat conduction problems, Edited by T. Jan and D. Piotr. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-6.
    122. K. Endo, T. Ida, S. Shimada, J. V. Ortiz, K. Deguchi, T. Shimizu and K. Yamada, Valence XPS, IR, and C13 NMR spectral analysis of 6 polymers by quantum chemical calculations. Journal of Molecular Structure, 2012. 1027: p. 20-30.
    123. A. Hülya, H. Baki̇ and K. Marek, Synthesis and characterization of poly[(R, S)-3-hydroxybutyrate] telechelics and their use in the synthesis of poly(methyl methacrylate)-b- poly(3-hydroxybutyrate) block copolymers. Journal of Applied Polymer Science, 2002. 85(5): p. 965-973.
    124. M. A. M. Oliveira, P. A. Melo, M. Nele and J. C. Pinto, In-situ incorporation of amoxicillin in PVA/PVAc-co-PMMA particles during suspension polymerizations. Macromolecular Symposia, 2011. 299-300(1): p. 34-40.
    125. 王賡銓, 分子量對聚甲基丙烯酸甲酯奈米泡孔材料泡孔型態的影響, 碩士論文 國立台灣科技大學: 材料科學與工程系, 2018.
    126. A. R. Shultz and P. J. Flory, Phase equilibria in polymer—solvent systems1,2. Journal of the American Chemical Society, 1952. 74(19): p. 4760-4767.

    無法下載圖示 全文公開日期 2023/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE