簡易檢索 / 詳目顯示

研究生: 吳龍發
Lung-Fa Wu
論文名稱: Nd: YAG脈衝雷射於PMMA板鑽孔之雷射電漿效應及多目標最佳化研究
Study of Laser Plasma Effect and Multi-objective Optimization for Drilling a PMMA Plate with Nd: YAG Pulsed Laser
指導教授: 蔡明忠
Ming-Jong Tsai
口試委員: 劉傳璽
Chuan-Hsi Liu
陳金聖
Chin-Sheng Chen
鄭正元
Jeng-Ywan Jeng
郭鴻飛
Hung-Fei Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 200
中文關鍵詞: 摻釹釔鋁石榴石 (Nd: YAG)雷射雷射鑽孔聚甲基丙烯酸甲酯(PMMA)擴散角度熱影響區(HAZ)田口方法灰色關聯分析
外文關鍵詞: Neodymium-doped yttrium aluminum garnet (Nd: YAG) laser, Laser drilling, Poly (methyl methacrylate) (PMMA), Divergence angle, Heat-affected zone (HAZ), Taguchi method, Grey relational analysis (GRA)
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射光束加工(LBM)是一種廣泛使用的非接觸式先進加工技術,適用於多款材料,主要應用於切割或鑽孔加工。在雷射加工製程中,雷射光斑的光束輪廓形狀對加工品質有著深遠影響。本論文研究主要由微光機電系統(MOEMS)組成的雷射加工機對光學級壓克力(PMMA)材料進行鑽孔,並對雷射電漿帶來的效果進行分析和討論。本研究開發一個使用Quantel Brilliant 摻釹釔鋁石榴石(Nd: YAG)的雷射系統,其雷射波長為1064 nm,脈衝寬度為5至6 ns,光束直徑為6 mm且雷射能量穩定度在5.6%以內。使用CCD相機和Ophir BeamGage軟體進行光束輪廓測量,並確認雷射光束輪廓具有近似高斯模式(TEM 00 模式)。本系統首先用於3毫米(mm)厚光學級聚甲基丙烯酸甲酯(PMMA 壓克力)平板上鑽孔,該PMMA平板具有高光密度OD 7+ @950~1085nm等級,常被用來做雷射安全護目鏡。透過調整雷射光束擴束器(Beam Expander)和雷射平場聚焦透鏡(ƒ-Theta lenses),使其獲得適合鑽孔的光斑尺吋和聚焦點位置。實驗結果顯示證實雷射電漿影響加工孔的擴散角。另外,能量密度和聚焦位置也會影響加工品質和熱影響區(HAZ)。本研究進一步利用田口方法(Taguchi method)和灰色關聯分析(GRA)去確認最佳化加工參數。田口實驗設計法L9(34)的四個主要控制參數為雷射能量(Laser energy)、聚焦點位置偏移(Focusing position offset)、鑽孔時間(Drill time)和重複率(Repetition rate)。使用四種品質包括真圓度(Roundness)、小丘比率(Hillock ratio)、錐度 (Taper angle)和熱影響區,在等權重的情況下來優化控制因子。結果顯示A1B3C1D1是控制因子的最優組合。且經確認實驗結果優於最佳實驗組 (A2B3C1D2 @ L9(34)),並且確認多重品質結果真圓度值為 0.938,小丘比(hillock)值為 0.246,錐度(taper)值為 -0.0036 ,平均HAZ值為 0.00,鑽孔品質的最大貢獻控制因子是B (聚焦位置偏移量為-1 mm )。


    Laser beam machining (LBM) is a most used non-contact advanced machining technology that has been applied in cutting or drilling processing. In the process of laser machining, the beam profile of a laser beam spot size profoundly influences the quality. This dissertation mainly discusses the drilling of optical-grade acrylic (PMMA) plates by a laser processing machine composed of Micro-Opto-Electro-Mechanical Systems (MOEMS) and analyzes the laser plasma effect etc. Firstly, the Quantel Brilliant neodymium-doped yttrium aluminum garnet (Nd: YAG) which has a wavelength of 1064 nm laser with a pulse width of 5 to 6 ns is developed. The beam diameter of 6 mm on the energy stability within 5.6 % is obtained. Beam profile measurements were performed by using a CCD camera and Ophir BeamGage software. The laser beam profile was confirmed with an approximately Gaussian mode (TEM 00 mode). The developed laser system is first employed to drill holes in a 3-mm-thick optical-grade acrylic polymethyl methacrylate (PMMA) plate on a safe window with high optical density and grade of OD 7+ @950~1085nm. A beam expander and ƒ-Theta Lenses are employed to obtain proper beam size and focusing position for drilling processing. It was confirmed that the laser plasma affects the divergence angle of the drill hole diameter. The energy density affects the processing quality and heat-affected zone (HAZ) too. Furthermore, the Taguchi method and Grey Relational Analysis (GRA) are used to achieve the optimal processing parameters. Four major control factors (Laser energy, focusing position offset, Drill time, and Repetition rate) are used in Taguchi-based experimental design L9(34). The experimental results with multiple quality characteristics were measured and used to optimize the control factors by using GRA with equal weighting of four qualities (roundness, Hillock ratio, taper, and HAZ). The results showed that A1B3C1D1 was the optimal combination of control factors. And it is confirmed that the experimental results are better than the best experimental group (A2B3C1D2 @ L9(34)), and it is confirmed that the multi-quality results have a roundness value of 0.938, a hillock value of 0.246, and a taper value of -0.0036, the average HAZ value is 0.00. Among them, the control factor B (focus position offset is -1 mm) contributes the most to the drilling quality.

    中文摘要 IV Abstract V 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XV 符號表 ⅩIⅩ 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機和目的 1 1.2.1 研究動機 1 1.2.2 研究目的 2 1.3 研究方法與步驟 3 1.4 本文架構 6 第二章 相關文獻與技術探討 8 2.1 雷射加工方法 8 2.2 鑰匙孔雷射銲(熔)接(Keyhole laser welding) 8 2.3 雷射電漿效應對壓克力材料影響 11 2.4 影響雷射加工品質的四大控制因子 14 2.4.1 脈衝雷射能量 14 2.4.2 雷射聚焦點位移和能量密度 15 2.4.3 鑽孔時間與能量累積 17 2.4.4 重複率 (頻率) 17 2.5 雷射鑽孔品質 18 2.5.1 真圓度 19 2.5.2 小丘比率 19 2.5.3 錐度 20 2.5.4 熱影響區 21 2.6 田口方法和灰色關聯分析 22 2.6.1 田口方法 22 2.6.2 灰色關聯分析(GRA) 22 2.6.3 田口-灰色關聯分析 24 第三章 雷射實驗系統架構與材料 27 3.1 實驗系統架構 27 3.2 實驗檢測儀器 36 3.3 系統整合與測量 39 3.4 壓克力材料鑽孔 46 第四章 雷射電漿效應對壓克力雷射鑽孔之影響 47 4.1 平均擴散角度和光束輪廓的測量 47 4.2 雷射電漿位置與對應直徑計算 50 4.3 能量密度和聚焦位置定義 52 4.4 壓克力板入口和出口圓孔直徑測量及擴散角度(θd)計算 58 4.5 雷射電漿與能量密度對壓克力板的影響 64 4.5.1 雷射能量密度對鑽孔深度之影響研究 64 4.5.2 雷射電漿效應影響壓克力板鑽孔擴散角度 71 4.5.3 雷射電漿效應在壓克力板上鑽孔過程記錄 73 4.5.4 雷射功率穩定性測量 77 4.6 雷射電漿效應對壓克力板鑽孔直徑和熱效應區擴散角度的影響 78 第五章 田口-灰色關聯分析之雷射鑽孔多目標優化研究 81 5.1 L9(34) 四項控制因子實驗設計與測量方法 81 5.2 孔徑的真圓度品質計算 84 5.3 小丘比率的品質計算 86 5.4 錐度品質計算 87 5.5 熱影響區(heat-affected zone, HAZ) 88 5.6 灰色關聯生成 89 5.7 灰色關聯係數和灰色關聯等級(GRG) 91 5.8 27組實驗和L9(34)直交表的確認實驗 92 5.9 基於田口灰色關聯分析參數優化 96 第六章 實驗結果與討論 97 6.1 雷射加工系統實驗結果及測量方法 97 6.1.1.景深(DOF)確認 97 6.1.2. 雷射鑽孔機光路調整與焦距對位步驟 98 6.1.3. 雷射處理系統和周邊測量設備建立 99 6.2 雷射電漿效應對壓克力板鑽孔擴散角度的影響 100 6.3 田口-灰色關聯分析確認實驗結果 108 6.4 27組實驗資料與田口-灰色關聯分析確認實驗結果 115 6.4.1 灰色關聯分析(GRA) 27組實驗資料 115 6.5 本章節結論 123 第七章 結論和未來研究方向 127 7.1 結論 127 7.2 未來研究方向 128 附錄 A. 雷射能量計實際測量結果 132 附錄 B. 原始壓克力測量數據和鑽孔後實體圖 133 附錄 C. 27組實驗壓克力鑽孔數據(135個)和照片 137 附錄 D. L9(34) 田口實驗之鑽孔測量數據與四種品質計算結果 155 附錄 E. 27組實驗結果 158 參考文獻 168

    [1] A.-K. Dubey, V. Yadava, “Laser beam machining—a review.” Int J Mach Tools Manu, vol. 48, no. 6,2008, pp. 609–628. https://doi.org/10.1016/j.ijmachtools.2007.10.017
    [2] F. Zhang, X. Dong, K. Yin, Y. Song, Y. Tian, C. Wang and J. Duan, “Temperature effects on the geometry during the formation of micro-holes fabricated by femtosecond laser in PMMA,” Optics & Laser Technology, vol. 100, Mar. 2018, pp. 256–260. https://doi.org/10.1016/j.optlastec.2017.10.014
    [3] L.-F. Wu and M.-J. Tsai, “Effect of laser plasma on Nd: YAG laser drilling of acrylic plate with high optical density,” Optics & Laser Technology, vol. 149, May 2022, 107827. https://doi.org/10.1016/j.optlastec.2021.107827
    [4] W. S. O. Rodden, S. S. Kudesia, D. P. Hand, and J. D. C. Jones, “A comprehensive study of the long pulse Nd: YAG laser drilling of multi-layer carbon fibre composites,” Optics Communications, vol. 210, no. 3–6, Sep. 2002, pp. 319–328. https://doi.org/10.1016/s0030-4018(02)01807-2
    [5] A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses,” Applied Physics A, vol. 90, no. 3, Oct. 2007, pp. 537–543. https://doi.org/10.1007/s00339-007-4300-6
    [6] A. E. Wynne, B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Applied Physics A, vol. 76, no. 3, Mar. 2003, pp. 373–378. https://doi.org/10.1007/s00339-002-1823-8
    [7] X.-H. Nguyen, C.-M. Chen, H.-T. Le, and H.-Y. Lee, “Enhancement of a Single-Axis Femtosecond Laser Scanning System by Using Two Galvanometers to Improve the Telecentricity and the Effective Scanning Length on Laser Process,” Applied Sciences, vol. 12, no. 23, Dec. 2022, 12434. https://doi.org/10.3390/app122312434
    [8] M. BASS, “Lasers for Laser Materials Processing,” Laser Materials Processing, 1983, pp. 1–14. https://doi.org/10.1016/b978-0-444-86396-6.50007-6
    [9] J. Dowden, W. S. Chang, P. Kapadia, and C. Strange, “Dynamics of the vapour flow in the keyhole in penetration welding with a laser at medium welding speeds,” Journal of Physics D: Applied Physics, vol. 24, no. 4, Apr. 1991, pp. 519–532. https://doi.org/10.1088/0022-3727/24/4/002
    [10] U. Reisgen, S. Olschok, and S. Longerich, “Laser beam welding in vacuum – A process variation in comparison with electron beam welding,” 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Anaheim, California, USA, September 26–30, ICALEO 2010 Paper #1807. https://doi.org/10.2351/1.5062093
    [11] P. Zhang, J. Chu, G. Qu, and D. Wang, “Numerical simulation of convex shape beam spot on stress field of plasma-sprayed MCrAlY coating during laser cladding process,” The International Journal of Advanced Manufacturing Technology, vol. 118, no. 1–2, Sep. 2021, pp. 207–217.https://doi.org/10.1007/s00170-021-07949-9
    [12] R. Chatterjee, “Fundamental Concepts and Discussion of Plasma Physics,” TECHNO REVIEW Journal of Technology and Management, vol. 2, no. 1, Mar. 2022, pp. 01–14. https://doi.org/10.31305/trjtm2022.v02.n01.001
    [13] B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Applied Physics A, vol. 119, no. 1, Dec. 2014, pp. 61–68. https://doi.org/10.1007/s00339-014-8955-5
    [14] I. Levchenko, S. Xu, O. Baranov, O. Bazaka, E. Ivanova, and K. Bazaka, “Plasma and Polymers: Recent Progress and Trends,” Molecules, vol. 26, no. 13, Jul. 2021, p. 4091, https://doi.org/10.3390/molecules26134091
    [15] P. Gröning, O. M. Küttel, M. Collaud-Coen, G. Dietler, and L. Schlapbach, “Interaction of low-energy ions (< 10 eV) with polymethylmethacrylate during plasma treatment,” Applied Surface Science, vol. 89, no. 1, May 1995, pp. 83–91. https://doi.org/10.1016/0169-4332(95)00013-5
    [16] G. S. Oehrlein, R. J. Phaneuf, and D. B. Graves, “Plasma-polymer interactions: A review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication,” Journal of Vacuum Science & Technology B, vol 29, no. 1, Jan. 2011, p. 010801. https://doi.org/10.1116/1.3532949
    [17] B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Applied Physics, vol. 63, no. 2, Aug. 1996, pp. 109–115. https://doi.org/10.1007/bf01567637
    [18] N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Applied Surface Science, vol. 247, no. 1–4, Jul. 2005, pp. 243–248. https://doi.org/10.1016/j.apsusc.2005.01.056
    [19] F. Dausinger, “Femtosecond technology for precision manufacturing: fundamental and technical aspects,” Third International Symposium on Laser Precision Microfabrication, Osaka, Japan, Feb. 2003, Vol. 4830, pp. 471-478. https://doi.org/10.1117/12.486506
    [20] F. Dausinger, H. Hugel, and V. I. Konov, “Micromachining with ultrashort laser pulses: from basic understanding to technical applications,” ALT'02 International Conference on Advanced Laser Technologies. Adelboden, Switzerland, SPIE Proceedings, Nov. 2003. Vol. 5147, pp. 106-115. http://dx.doi.org/10.1117/12.537496.
    [21] Sanjay Mishra, Vinod Yadava, Laser Beam Micro Machining (LBMM) – A review, Optics and Lasers in Engineering, Vol. 73 ,2015, p.89-122. https://doi.org/10.1016/j.optlaseng.2015.03.017
    [22] Abeer A. Shehab, “Hole Characteristic of CO2 Laser Drilling of Poly-Methyl Methacrylate PMMA,” Journal of Mechanical Engineering Research and Developments, Vol. 43, No. 3, 2020, pp. 186-197.
    [23] M. von Allmen and A. Blatter, “Laser-Beam Interactions with Materials,” Springer Series in Materials Science, Berlin Heidelberg ,1995 https://doi.org/10.1007/978-3-642-57813-7.
    [24] X-. R. Chou, J-. X Wang, J-. S Cheng, “Laser Direct Writing of Diamond Micro-nozzle Using Q-Switched Nd: YAG Laser,” Journal of the Chinese Society of Mechanical Engineers, Vol.29, No.4, 2008, pp.289-297. http://10.29979/JCSME.200808.0003
    [25] C. Ma, Z. Ma, L. Gao, T. Wu, F. Wang, and H. Ishida, “Toward improving the reflectivity of ablative heat-insulating coating under high-energy laser irradiation,” Journal of Materials Science, vol. 55, no. 33, Aug. 2020, pp.15787–15796. https://doi.org/10.1007/s10853-020-05138-9
    [26] A. Alkhawwam, B. Abdallah, K. Kayed, and K. Alshoufi, “Effect of Nitrogen Plasma Afterglow on Amorphous Carbon Nitride Thin Films Deposited by Laser Ablation,” Acta Physica Polonica A, vol. 120, no. 3, Sep. 2011, pp. 545–551. https://doi.org/10.12693/aphyspola.120.545
    [27] W. M. Steen and J. Mazumder, “Laser Material Processing,” 4th ed., Springer, Ann Arbor, MI USA, 2010. https://doi.org/10.1007/978-1-84996-062-5
    [28] D. Ashkenasi, T. Kaszemeikat, N. Mueller, R. Dietrich, H. J. Eichler, and G. Illing, “Laser Trepanning for Industrial Applications,” Physics Procedia, vol. 12, 2011, pp. 323–331. https://doi.org/10.1016/j.phpro.2011.03.140
    [29] D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Optics and Lasers in Engineering, vol. 35, no. 3, Mar. 2001, pp. 149–164. https://doi.org/10.1016/s0143-8166(01)00008-2
    [30] S. Roos, “Laser drilling with different pulse shapes,” Journal of Applied Physics, vol. 51, no. 9, Sep. 1980, pp.5061–5063. https://doi.org/10.1063/1.328358
    [31] V. A. Serebryakov, M. V. Volkov, and X. Zhang, “Laser drilling of microholes in refractory alloys,” Journal of Optical Technology, vol. 72, no. 3, pp. 241-244, Mar. 2005, https://doi.org/10.1364/jot.72.000241
    [32] A. K. Nath, “Laser Drilling of Metallic and Nonmetallic Substrates. Comprehensive Materials Processing,” Comprehensive Materials Processing, 2014, pp.115–175. https://doi.org/10.1016/b978-0-08-096532-1.00904-3
    [33] S. Bandyopadhyay, J. K. Sarin Sundar, G. Sundararajan, and S. V. Joshi, “Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets,” Journal of Materials Processing Technology, vol. 127, no. 1, Sep. 2002, pp. 83–95. https://doi.org/10.1016/s0924-0136(02)00270-4
    [34] P. Rajesh, U. Nagaraju, G. H. Gowd, and T. V. Vardhan, “Experimental and parametric studies of Nd:YAG laser drilling on austenitic stainless steel,” The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1–4, Aug. 2015, pp. 65–71. https://doi.org/10.1007/s00170-015-7639-4
    [35] H. Wan, L. Liu, Z. Ding, J. Wang, Y. Xiao, and Z. Zhang, “Single-longitudinal-mode, narrow bandwidth double-ring fiber laser stabilized by an efficiently taper-coupled high roundness microsphere resonator,” Optics & Laser Technology, vol. 102, Jun. 2018, pp. 160–165. https://doi.org/10.1016/j.optlastec.2017.12.039
    [36] Geometrical product specifications (GPS) (2011) ISO 12181-1. Roundness. (n.d.). https://doi.org/10.3403/30198153
    [37] Geometrical product specifications (GPS) (2011) ISO 12181-2. Roundness. (n.d.). https://doi.org/10.3403/30198156.
    [38] T. Tiainen and R. Viitala, “Robust optimization of multi-probe roundness measurement probe angles,” Measurement, vol. 168, Jan, 2021,108146. https://doi.org/10.1016/j.measurement.2020.108146
    [39] H. Dachraoui, W. Husinsky, “Thresholds of Plasma Formation in Silicon Identified by Optimizing the Ablation Laser Pulse Form,” Physical Review Letters, vol. 97, no. 10, Sep. 2006,107261.https://doi.org/10.1103/PhysRevLett.97.107601
    [40] H. Dachraoui, W. Husinsky, “Fast electronic and thermal processes in femtosecond laser ablation of Au,” Applied Physics Letters, vol. 89, no. 10, Sep. 2006, 104102. https://doi.org/10.1063/1.2338540
    [41] H. Dachraoui, W. Husinsky, G. Betz, "Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion." Applied Physics A, 83, 2006, pp.333-336. https://doi.org/10.1007/s00339-006-3499-y
    [42] S. Bashir, M.-S. Rafique, W. Husinsky, “Surface topography (nano-sized hillocks) and particle emission of metals, dielectrics and semiconductors during ultra-short-laser ablation: Towards a coherent understanding of relevant processes,” Applied Surface Science, vol. 255, no. 20, Jul. 2009, pp.8372–8376. https://doi.org/10.1016/j.apsusc.2009.05.090
    [43] K. Pratap Singh, A. Bahl, G. Norkey, and G. Dutt Gautam, “Experimental investigation and parametric optimization of the hole-circularity and taper angle during laser drilling kevlar-29 fiber composite,” Materials Today: Proceedings, vol. 56, 2022, pp. 3325–3329. https://doi.org/10.1016/j.matpr.2021.10.155
    [44] G. Chryssolouris, “Laser Machining—Theory and Practice. Mechanical Engineering Series,” Springer, New York Inc., NewYork,1991. https://doi.org/10.1007/978-1-4757-4084-4
    [45] A. Sharma, V. Yadava, “Experimental analysis of Nd-YAG laser cutting of sheet materials – A review,” Optics & Laser Technology, vol. 98, Jan. 2018, pp. 264–280. https://doi.org/10.1016/j.optlastec.2017.08.002
    [46] P. Mayuet Ares, J. Vázquez Martínez, M. Marcos Bárcena, and A. Gámez, “Experimental Study of Macro and Microgeometric Defects in Drilled Carbon Fiber Reinforced Plastics by Laser Beam Machining,” Materials, vol. 11, no. 8, Aug. 2018, 1466.https://doi.org/10.3390/ma11081466
    [47] C.-H. Li, M.-J. Tsai, C. D. Yang, “Study of Optimization of laser cutting parameters for QFN packages by Taguchi’s matrix experimental method.” Optics & Laser Technology, 39, 2007, pp.786–795. https://doi.org/10.1016/j.optlastec.2006.02.005
    [48] S. Kumar Singh Yadav, V. Yadava, and V. Lakshmi Narayana, “Experimental study and parameter design of electro-discharge diamond grinding,” The International Journal of Advanced Manufacturing Technology, vol. 36, no. 1–2, Dec. 2006, pp. 34–42. doi: 10.1007/s00170-006-0820-z.
    [49] Y. S. Tarng, S. C. Juang, and C. H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing,” Journal of Materials Processing Technology, vol. 128, no. 1–3, Oct. 2002, pp. 1–6. https://doi.org/10.1016/s0924-0136(01)01261-4
    [50] C.-H. Li, M.-J. Tsai, “Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey relational analysis,” Optics & Laser Technology, vol. 41, no. 5, Jul, 2009, pp. 634–642. https://doi.org/10.1016/j.optlastec.2008.09.009
    [51] L. K. Pan, C. C. Wang, S. L. Wei, and H. F. Sher, “Optimizing multiple quality characteristics via Taguchi method-based Grey analysis,” Journal of Materials Processing Technology, vol. 182, no. 1–3, Feb. 2007, pp. 107–116. https://doi.org/10.1016/j.jmatprotec.2006.07.015
    [52] J.L. Deng, “Introduction to Grey System Theory,” The Journal of Grey System, 1989, 1, pp.1–24.
    [53] M.-J. Tsai and C.-H. Li, “The use of grey relational analysis to determine laser cutting parameters for QFN packages with multiple performance characteristics,” Optics & Laser Technology, vol. 41, no. 8, Nov. 2009, pp. 914–921. https://doi.org/10.1016/j.optlastec.2009.03.006
    [54] A. Malik and A. Manna, “Multi-response optimization of laser-assisted jet electrochemical machining parameters based on gray relational analysis,” J Braz. Soc. Mech. Sci. Eng., vol. 40, no. 3, Feb. 2018, 148. https://doi.org/10.1007/s40430-018-1069-9
    [55] H. Yan, B. Ji, S. Wen, and Q. Shi, “Research on wavefront metrology of continuous phase plate with large gradient based on phase retrieval,” International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China. December 4, 2020, 1161738. https://doi.org/10.1117/12.2585436
    [56] K. F. Tamrin, Y. Nukman, I. A. Choudhury, and S. Shirley, “Multiple-objective optimization in precision laser cutting of different thermoplastics,” Optics and Lasers in Engineering, vol. 67, Apr. 2015, pp. 57–65. https://doi.org/10.1016/j.optlaseng.2014.11.001
    [57] P. Achuthamenon Sylajakumari, R. Ramakrishnasamy, and G. Palaniappan, “Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in Co-Continuous Composite,” Materials, vol. 11, no. 9, Sep. 2018, 1743. https://doi.org/10.3390/ma11091743
    [58] Md. Pervez, F. Shafiq, Z. Sarwar, M. Jilani, and Y. Cai, “Multi-Response Optimization of Resin Finishing by Using a Taguchi-Based Grey Relational Analysis,” Materials, vol. 11, no. 3, 2018, 426. https://doi.org/10.3390/ma11030426
    [59] R. Saidi, B. B. Fathallah, T. Mabrouki, S. Belhadi, and M. A. Yallese, “Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 9–12, Oct. 2018, pp. 2945–2968. https://doi.org/10.1007/s00170-018-2816-x.
    [60] M. Sarıkaya and A. Güllü, “Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL,” Journal of Cleaner Production, vol. 65, Feb. 2014, pp. 604–616. https://doi.org/10.1016/j.jclepro.2013.08.040
    [61] Y. Pu, Y. Zhao, J. Meng, G. Zhao, H. Zhang, and Q. Liu, “Process Parameters Optimization Using Taguchi-Based Grey Relational Analysis in Laser-Assisted Machining of Si3N4,” Materials, vol. 14, no. 3, Jan. 2021, 529. https://doi.org/10.3390/ma14030529
    [62] L. Das, R. Nayak, K.-K. Saxena, J. Nanda, S.-P. Jena, A. Behera, S. Sehgal, C. Prakash, S. Dixit, D.S. Abdul-Zahra, “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, 4765. https://doi.org/10.3390/ma15144765
    [63] C. S. Rubi, J. U. Prakash, R. Čep, and M. Elangovan, “Optimization of Process Variables in the Drilling of LM6/B4C Composites through Grey Relational Analysis,” Materials, vol. 15, no. 14, Jul. 2022, 4860. https://doi.org/10.3390/ma15144860.
    [64] E. EKİCİ and G. UZUN, “Effects on machinability of cryogenic treatment applied to carbide tools in the milling of Ti6AI4V with optimization via the Taguchi method and grey relational analysis,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 7, Jun. 2022. https://doi.org/10.1007/s40430-022-03572-1
    [65] B.-K. Gonfa, D. Sinha, U.-K. Vates, I.-A. Badruddin, M. Hussien, S. Kamangar, G.K. Singh, G.M.-S. Ahmed, N.J. Kanu, N. Hossain, “Investigation of Mechanical and Tribological Behaviors of Aluminum Based Hybrid Metal Matrix Composite and Multi-Objective Optimization,” Materials, vol. 15, no. 16, Aug. 2022, 5607. https://doi.org/10.3390/ma15165607
    [66] M.-F. Chen, W.-T. Hsiao, M.-C. Wang, K.-Y. Yang, and Y.-F. Chen, “Multi-performance characterization analysis of diameter and taper angle on alumina ceramic via using pulsed ultraviolet laser percussion drilling method,” Optical and Quantum Electronics, vol. 49, no. 11, Nov. 2017, https://doi.org/10.1007/s11082-017-1222-1
    [67] Quantel-Laser Technologies, Inc. Standard Products Catalog, Quantel-Laser Technologies, Inc.: Les Ulis Cedex, French, 2010, pp. 6–7.
    [68] LINOS. An Excelitas Technologies Company. LINOS CATALOG—Beam Expander Edition, LINOS: Wickliffe, OH, USA, 2017, pp. 416–417.
    [69] LINOS. An Excelitas Technologies Company. LINOS CATALOG—ƒ-theta Edition, LINOS: Wickliffe, OH, USA, 2017, p. 411.
    [70] Ophir-Spiricon, L.L.C. Laser Power & Energy Measurement Laser Beam Analysis Catalog; Israel Ophir Company: Jerusalem, Israel, 2016; (50-150)-A p. 43, (PE50BB) p. 83 (Nova ll) p. 110, (sp928) p.160, (LBS-100 beam splitter) p. 211.
    [71] Ophir-Spiricon, LLC, BeamGage User Guide Laser Beam Analyzer, Professional Edition Version 6.9, Israel Ophir Company, Feb 2017, pp.117-119.
    [72] Laservision USA Inc. Catalog English P5P05 WINDOWS 2017, USA, 2016–2017
    [73] ISO 11146-1, Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios- Part 1:Stigmatic and simple astigmatic beams, first edition, Jan 2005.
    [74] ISO 11146-2, Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios- Part 2:General astigmatic beams, first edition, Feb 2005.
    [75] ISO 11146-3, Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios- Part 3:Intrinsic and geometrical laser beams classification, propagation and details of test methods, first edition, Feb 2004.
    [76] S. Bandyopadhyay, H. Gokhale, J. K. Sarin Sundar, G. Sundararajan, and S. V. Joshi, “A statistical approach to determine process parameter impact in Nd: YAG laser drilling of IN718 and Ti-6Al-4V sheets,” Optics and Lasers in Engineering, vol. 43, no. 2, Feb. 2005, pp. 163–182. https://doi.org/10.1016/j.optlaseng.2004.06.013
    [77] M.-J. Tsai, L.-F. Wu, “Multi-Objective Optimization of Nd: YAG Laser Drilling of Optical-Grade Acrylic Plate Using Taguchi-Based Grey Relational Analysis,” Materials, vol. 15, no. 24, Dec. 2022, 8998. https://doi.org/10.3390/ma15248998.
    [78] T. Tiainen, R. Viitala, T. P. Holopainen, and B. Hemming, “Analysis of total rotor runout components with multi-probe roundness measurement method,” Measurement, vol. 179, Jul. 2021, 109422. https://doi.org/10.1016/j.measurement.2021.109422
    [79] M.-J. Tsai, C.-H. Li, and C.-C. Chen, “Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm,” Journal of Materials Processing Technology, vol. 208, no. 1–3, Nov. 2008, pp. 270–283. https://doi.org/10.1016/j.jmatprotec.2007.12.138
    [80] S. Liu, Y. Lin, “Introduction to Grey Systems Theory,” Grey Systems, 2010, pp. 1–18. https://doi.org/10.1007/978-3-642-16158-2_1
    [81] M. F. Yang, M. L. Huang, and M. J. Tsai, “Multi-Objective Optimization of Cleaning Process for LAO Wafers Using Grey Relational Analysis,” Advanced Materials Research, vol. 579, Oct. 2012, pp. 260–268. https://doi.org/10.4028/www.scientific.net/amr.579.260
    [82] Q. Li, L. Yang, C. Hou, O. Adeyemi, C. Chen, and Y. Wang, “Surface ablation properties and morphology evolution of K24 nickel based superalloy with femtosecond laser percussion drilling,” Optics and Lasers in Engineering, vol. 114, Mar. 2019, pp. 22–30. https://doi.org/10.1016/j.optlaseng.2018.10.010
    [83] S. Prakash, S. Kumar, “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA,” Precision Engineering, vol. 49, Jul. 2017, pp. 220–234. https://doi.org/10.1016/j.precisioneng.2017.02.010

    無法下載圖示
    全文公開日期 2026/05/03 (校外網路)
    全文公開日期 2028/05/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE