簡易檢索 / 詳目顯示

研究生: 陳友三
Yu-san Chen
論文名稱: 穿透式電極於具獨立操控功能之垂直堆疊有機發光二極體元件之應用與研究
The Application and Study of Transparent Electrode in Vertically Stacked Organic Light-Emitting Diodes with Function of Individually Controllable Electrodes
指導教授: 李志堅
Chih-chien Lee
口試委員: 劉舜維
Shun-wei Liu
徐世祥
none
范慶麟
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 獨立操控垂直堆疊有機發光二極體元件穿透式電極
外文關鍵詞: individually controllable electrodes, vertically stacked organic light-emitting diodes, transparent electrode
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本篇論文構想是設計一有機發光二極體元件,在單位像素(pixel)下具有調光色之功能,可發出各色光或組合出白光。論文將以數個有激發光二極體元件垂直堆疊,同時保有各別操控功能之垂直堆疊元件來達成概念。文中將藍光及綠光元件正反倒置堆疊,並共用中間穿透式陰極,減少元件之複雜度及電極數目。
  由於本實驗室尚未發展過此垂直堆疊並具有獨立操控之電極層之元件結構,故本文將針對垂直堆疊元件之平台建立及中間穿透式電極層最佳化之兩大重點進行研究探討,實驗以螢光材料MADN做為正置之藍光發光單元的發光層;螢光材料Alq3做為倒置之綠光發光單元的發光層,並最佳化n型摻雜注入層及倒置式元件結構,所得之結構分別為藍光單元:ITO/NPB(50 nm)/MADN(55 nm)/Bphen:Cs2CO3 [10%](10 nm)/Ag(100 nm)以及綠光單元:ITO/Bphen:Cs2CO3 [10%](10 nm)/Alq3(40 nm)/NPB(50 nm)/WO3(20 nm)/Al(120 nm)。在個別單元結構確立後將之疊加,並套用WO3/Ag(14 nm)/WO3做為穿透式陰極取代原結構之反射式陰極。
  根據實驗電極最佳化之結果得到堆疊元件: ITO/NPB(50 nm)/MADN(55 nm)/Bphen:Cs2CO3 [10%](10 nm)/Ag(14 nm)/Bphen: Cs2CO3 [10%](10 nm)/Alq3(40 nm)/NPB(50 nm)/WO3(20 nm)/Al(120 nm),其藍綠發光單元個別的電性及效率,可與單一發光層元件相同及相近。
  同時,由實驗結果可以發現由於穿透式中間電極所造成的微共振腔效應,對於發光頻譜有相當大的調變作用。如果藉由適當的微共振腔結構的設計,窄化其電致發光頻譜,進而提高色純度將有利於顯示應用;反之,拓寬其電致發光頻譜,進而提高演色性有利於室內照明等高演色性需求之應用。


  This thesis is for designing an organic light emitting diode which unit sub-pixel has the function of adjusting color and luminance. It can emit colorful lights or white light by combination. The thesis will reach the concept by making a vertical stacked organic light emitting diode that stacking several organic light emitting diodes and retaining the control function of each cell. In thesis, we used standard structure blue light diode stacking inverted structure green light diode and share the middle transparent cathode to reduce the diode complexity and the number of electrodes.
  The structure of stacked organic light emitting diode with individual controllable electrode layer had never been developed before this thesis in our laboratory, and therefore the thesis will focus on two focal points to study and investigate: the establishment of vertical stacked device platform and optimization of middle transparent cathode. The experiment used fluorescent material MADN as emitting layer of standard structure blue light cell; fluorescent material Alq3 as emitting layer of inverted structure green light cell, By optimized the n-type doping injection layer and inverted structure device , the resulting structures were blue light cell: ITO/NPB(50 nm)/MADN(55 nm)/Bphen:Cs2CO3 [10%](10 nm)/Ag(100 nm) and green light cell: ITO/ Bphen:Cs2CO3 [10%](10 nm)/Alq3(40 nm)/NPB(50 nm)/WO3 (20 nm)/ Al (120 nm). After establishing each device structure, we stacked them and applied WO3/Ag(14 nm)/WO3 for transparent cathode to replace the reflected cathode of original structure.
  According to optimized experiment result, the vertical stacked device structure is: ITO/NPB(50 nm)/MADN(55 nm)/Bphen:Cs2CO3 [10%](10 nm)/Ag(14 nm)/Bphen:Cs2CO3 [10%](10 nm)/Alq3(40 nm)/NPB(50 nm)/ WO3 (20 nm)/Al (120 nm), which each electrically and efficiency can reach the same compared to single devices.
  In the same experiment, we also discovered the microcavity effects result from middle transparent electrode. The microcavity effect has considerable effect on modulating emission spectrum. With a proper designed microcavity structure, we could narrow the light-emitting spectrum for display application and broaden the light-emitting spectrum for lighting application.

總目錄 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 圖目錄 viii Chapter 1 緒論 1 1.1 前言 1 1.2 有機發光二極體的發展與歷史沿革 4 1.3 發光原理與機制 6 1.4 基本結構 8 1.5 堆疊式有機發光二極體結構介紹 12 1.6 有機發光二極體元件材料介紹 19 1.6.1 陽極材料 19 1.6.2 電洞注入材料 20 1.6.3 電洞傳輸材料 20 1.6.4 電子傳輸材料 21 1.6.5 電子注入材料 22 1.6.6 陰極材料 22 1.6.7 連接層材料 23 1.7 研究動機 24 Chapter 2 理論基礎 25 2.1 有機半導體傳輸機制 25 2.2 有機材料的吸收與放射 28 2.3 有機發光二極體的效率 29 2.4 濃度淬息效應 32 2.5 微共振腔效應 32 Chapter 3 實驗流程與設備 34 3.1 實驗材料 34 3.1.1 基板 34 3.1.2 藥品 34 3.2 實驗設備 36 3.2.1 超音波清洗機 36 3.2.2 加熱板 36 3.2.3 紫外光曝光機 36 3.2.4 旋轉塗佈機 36 3.2.5 氧氣電漿清潔機 37 3.2.6 手套箱 38 3.2.7 機械手臂傳遞腔 39 3.2.8 熱蒸鍍機 39 3.2.9 膜厚量測系統 (α-Step ) 40 3.2.10 光電子光譜儀 (AC-2) 41 3.2.11 光電特性BJV量測系統 41 3.2.12 紫外/ 可見光譜儀 41 3.3 實驗步驟 42 3.3.1 ITO玻璃基板電路圖形定義 42 3.3.2 ITO玻璃基板前處理 44 3.3.3 有機材料與金屬電極蒸鍍 45 3.3.4 元件封裝 46 Chapter 4 結果與討論 48 4.1 標準模型建立及電子注入層最佳化 48 4.2 倒置式元件建立 50 4.3 垂直堆疊並具有電極獨立操控功能之元件建立 52 4.3.1 穿透式中間電極建立 52 4.3.2 最佳化中間電極之堆疊元件之製作 59 Chapter 5 結論 63 Chapter 6 參考文獻 64

[1] http://www.lg.com/global/
[2] http://www.samsung.com/sec/consumer/tv-video/tv/
[3] http://www.lg.com/global/
[4] http://www.emagin.com/oled-microdisplays/
[5] http://fourtitude.com/news/Audi_News_1/ces-2013-lighting-technology-from-audi/
[6] http://www.osram.com/osram_com/index.jsp
[7] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., 38, 2042 (1963).
[8] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films, 94, 171 (1982).
[9] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
[10] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks and K. Mackay, “Light-emitting diodes based on conjugated polymers,” Nature, 347, 539 (1990).
[11] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, “Organic Electroluminescent Device with a Three-Layer Structure,” Jpn. J. Appl. Phys., 27, L713 (1988).
[12] M. Era, C. Adachi, T. Tsutsui and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chem. Phys. Lett., 178, 488 (1991).
[13] J. Kido, M. Kohda, K. Okuyama and K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers,” Appl. Phys. Lett., 61, 761 (1992).
[14] J. Kido, M. Kimura and K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science, 267, 1332 (1995).
[15] J. Kido, H. Shionoya and K. Nagai, “Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett., 67, 2281 (1995).
[16] J. C. Chen and S. W. Huang , “OLED materials and devices of dream displays,” 1st ed., Taipei: WuNan Publisher, 40 (2007).
[17] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Conjugated polymer light‐emitting diodes on silicon substrates,” Appl. Phys. Lett. 65, 2636 (1994).
[18] V. Bulović, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, and M. E. Thompson, “A surface-emitting vacuum-deposited organic light emitting device,” Appl. Phys. Lett. 70, 2954 (1997).
[19] T. Miyashita, S. Naka, H. Okada, and H. Onnagawa, Proceedings IDW'04, 1421.(2004).
[20] C. W. Chen, C. L. Lin, and C. C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85, 2469 (2004).
[21] (a) T. Y. Chu, J. F. Chen, S. Y. Chen, C. J. Chen, and C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett. 89, 053503 (2006). (b) T. Y. Chu, S. Y. Chen, J. F. Chen and C. H. Chen, “Ultrathin Electron Injection Layer on Indium–Tin Oxide Bottom Cathode for Highly Efficient Inverted Organic Light-Emitting Diodes,” Jpn. J. Appl. Phys. 45, 4948 (2006).
[22] P. E. Burrows, S. R. Forrest, S. P. Sibley, and M. E. Thompson, “Color‐tunable organic light‐emitting devices,” Appl. Phys. Lett. 69, 2959 (1996).
[23] Z. Shen, P. E. Burrows, V. Bulovic’, S. R. Forrest, M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science 276, 2009 (1997).
[24] K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, “Transparent organic light emitting diodes using a multilayer oxide as a low resistance transparent cathode,” Appl. Phys. Lett. 93, 013301 (2008)
[25] K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H. W. Choi, N. Y. Lee, Y. H. Tak and J. L. Lee, “Optical Properties of WO3/Ag/WO3 Multilayer As Transparent Cathode in Top-Emitting Organic Light Emitting Diodes,” J. Phys. Chem. C, 115, 3453 (2011).
[26] B. Tian, G. Williams, D. Ban, and H. Aziz, “Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode,” J. Appl. Phys. 110, 104507 (2011).
[27] J. Kido, T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, and A. Yokoi, “Multiphoton Organic EL device having Charge Generation Layer,” SID Int. Symp Digest Tech. Pap. 34, 979 (2003)
[28] S. Hamwi, J. Meyer, M. Kroger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes,” Adv. Funct. Mater. 20, 1762 (2010).
[29] H. M. Zhang, Wallace C. H. Choy and Y. F. Dai, “Independently controllable stacked OLEDs with high efficiency by using semitransparent Al/WO3/Ag intermediate connecting layer,” J. Phys. D: Appl. Phys. 41 105108 (2008).
[30] C.J. Liang, Wallace C.H. Choy, “Tunable full-color emission of two-unit stacked organic light emitting diodes with dual-metal intermediate electrode,” J. Organomet. Chem. 694, 2712 (2009).
[31] H.M. Zhang, Wallace C.H. Choy, Y.F. Dai, D.G. Ma, “The structural composite effect of Au–WO3–Al interconnecting electrode on performance of each unit in stacked OLEDs,” Organ. Electron. 10, 402 (2009).
[32] S. W. Tong, Y. Wang, Y. Zheng,; M. F. Ng, K. P. Loh, “Graphene Intermediate Layer in Tandem Organic Photovoltaic Cells,” Adv. Funct. Mater. 21, 4430 (2011).
[33] T. Ishida, H. Kobayashi and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., 73, 4344 (1993)..
[34] M. G. Mason, L. S. Hung, C. W. Tang1, S. T. Lee, K. W. Wong, and M. Wang, “Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,” J. Appl. Phys. 86, 1688 (1999)
[35] C. C. Chang, S. W. Hwang, C. H. Chen, J. F. Chen, “High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units,” Jpn. J. Appl. Phys. 43, 6418 (2004).
[36] H. Kanno, R. J. Holmes, Y. Sun, S. K. Cohen, S. R. and Forrest, “White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer,” Adv. Mater. 18, 339, (2006).
[37] C. E. Small, S. W. Tsang, J. Kido, S. K. So, F. So, “Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer,” Adv. Funct. Mater. 22, 3261 (2012).
[38] Junji Kido and Toshio Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett. 73, 2866 (1998).
[39] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. Wu, C. W. Chu, and Y. Yang, “Effective connecting architecture for tandem organic light-emitting devices,” Appl. Phys. Lett. 87, 241121 (2005).
[40] H. Zhang, Y. Dai and D. Ma, “High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer,” Appl. Phys. Lett., 91, 123504 (2007).
[41] T.-Y. Cho, C.-L. Lin and C.-C. Wu, “Microcavity two-unit tandem organic light-emitting devices having a high efficiency,” Appl. Phys. Lett., 88, 111106 (2006).
[42] T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin and J. Kido, “High-efficiency stacked white organic light-emitting diodes,” Appl. Phys. Lett., 92, 043301 (2008).
[43] M. V. M. Rao, T.-S. Huang, Y.-K. Su and Y.-T. Huang, “Fullerene and Pentacene as a Pure Organic Connecting Layer in Tandem Organic Light Emitting Devices,” J. Electrochem. Soc., 157, H69 (2010).
[44] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys., 43, 5033 (1972).
[45] R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models,” J. Chem. Phys., 44, 3797 (1966).
[46] E. Pinotti, A. Sassella, A. Borghesi and R. Tubino, “Electrical characterization of organic semiconductors by transient current methods,” Synth. Metals, 122, 169 (2001).
[47] J. C. Chen and S. W. Huang , “OLED materials and devices of dream displays,” 1st ed., Taipei: WuNan Publisher, 20 (2007).
[48] J. C. Chen and S. W. Huang , “OLED materials and devices of dream displays,” 1st ed., Taipei: WuNan Publisher, 234 (2007).
[49] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys., 90, 5048 (2001).
[50] M. Stosela , J. Staudigela, F. Steubera, J. Blassinga, J. Simmerera, A. Winnackerb, H. Neunerc, D. Metzdorfc, H. H. Johannesc, W. Kowalskyc, “Electron injection and transport in 8-hydroxyquinoline aluminum,” Synth. Met. 111–112, 19 (2000).
[51] J. Ma, X. Y. Jiang, Z. Liang, J. Cao, X. Zhang and Z. L. Zhang, “Highly power efficient organic light-emitting diodes based on Cs2CO3 n-doped and MoO3 p-doped carrier transport layers,” Semicond. Sci. Technol. 24, 035009 (2009).
[52] Y. W. Park, J. H. Choi, T. H. Park, E. H. Song, H. Kim, H. J. Lee, S. J. Shin, B. K. Ju, and W. J. Song, “Role of n-dopant based electron injection layer in n-doped organic light-emitting diodes and its simple alternative,” Appl. Phys. Lett., 100, 013312 (2012).
[53] C. Shen, I. G. Hill, A. Kahn, J. Schwartz, “Organometallic Chemistry at the Magnesium-Tris(8-hydroxyquinolino)aluminum Interface,” J. Am. Chem. Soc. 122, 5391 (2000).
[54] C. L. Lin, T. Y. Cho, C. H. Chang, and C. C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88, 081114 (2006).
[55] H. Riel, S. Karg, T. Beierlein, W. Ries, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94, 5290 (2003).
[56] C. L. Lin, H. W. Lin, and C. C. Wu, “ Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87, 021101 (2005).
[57] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Ries, “Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling,” Appl. Phys. Lett. 82, 466 (2003).
[58] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface- modified Ag anode,” Appl. Phys. Lett. 83, 5127 (2003).

QR CODE