簡易檢索 / 詳目顯示

研究生: 李孟榛
Meng-Zhen Li
論文名稱: 高穿透式有機太陽能電池
Highly transparent organic photovoltaic
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 穿透式有機太陽能電池高穿透電極高平均明視覺穿透度高演色性
外文關鍵詞: Highly transparent organic photovoltaic, highly transparent electrode, high average visible transmission, high color rendering index
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 碩士學位論文指導教授推薦書 I 碩士學位考試委員審定書 II 中文摘要 III ABSTRACT IV 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池介紹 2 1.3 有機太陽能電池結構介紹 3 1.3.1 單層結構 3 1.3.2 雙層異質接面結構 4 1.3.3 混合層異質接面結構 5 1.3.4 平面混合層異質接面結構 7 1.4 材料介紹 8 1.4.1 電洞傳輸材料 8 1.4.2 施體材料 8 1.4.3 受體材料 9 1.4.4 激子阻擋材料 9 1.5 穿透式OPV文獻回顧 9 1.6 實驗動機 10 第二章 理論基礎 12 2.1有機太陽能電池工作原理 12 2.2等效電路 15 2.3特性曲線 16 2.3.1 開路電壓(Voc) 16 2.3.2 短路電流(Jsc) 17 2.3.3 填充因子(FF) 18 2.3.4 功率轉換效率(PCE) 18 2.3.5 串聯電阻(Rs)與並聯電阻(Rsh) 18 第三章 實驗方法 20 3.1 實驗設備 20 3.1.1 超音波清洗機 20 3.1.2 烤盤 20 3.1.3 旋轉塗佈機 21 3.1.4 紫外光曝光機 22 3.1.5 材料純化系統 22 3.1.6 高真空熱蒸鍍機 23 3.1.7 氮氣循環手套箱 24 3.2 實驗前置作業 25 3.2.1 有機材料純化 25 3.2.2 黃光微影製程 26 3.3 實驗步驟 28 3.3.1 基板清洗 28 3.3.2 高真空熱蒸鍍製程 28 3.3.3 元件封裝 30 3.4 量測設備 30 3.4.1 膜厚儀 30 3.4.2 橢圓偏振儀 31 3.4.3 太陽光模擬器 32 3.4.4 外部量子效率量測系統 32 3.4.5 UV-VIS光譜儀 33 3.4.6 原子力顯微鏡 34 3.4.7 四點探針 35 第四章 結果與討論 36 4.1元件材料 36 4.1.1 主動層材料 36 4.1.2主動層材料吸收頻譜 36 4.2穿透電極 37 4.2.1 穿透電極之比較 37 4.2.2 不同比例下銅銀合金特性 41 4.2.3 Capping layer調變 42 4.3有機太陽能電池元件特性 43 4.3.1 主動層比例調變 43 4.3.2 主動層厚度調變 45 4.3.3 穿透電極厚度調變 48 4.4串座有機太陽能電池 52 4.4.1 非穿透式串座元件 52 4.4.2 穿透式串座元件 54 第五章 結論與未來展望 56 參考文獻 57 圖目錄 圖1-1單層結構有機太陽能電池示意圖 3 圖1-2單層結構有機太陽能電池工作原理示意圖 4 圖1-3雙層異質接面結構有機太陽能電池示意圖 4 圖1-4雙層異質接面結構有機太陽能電池工作原理示意圖 5 圖1-5混合層異質接面結構有機太陽能電池示意圖 6 圖1-6混合層異質接面結構有機太陽能電池工作原理示意圖 6 圖1-7平面混合層異質接面結構有機太陽能電池 7 圖1-8平面混合層異質接面結構有機太陽能電池工作原理示意圖 8 圖2-1異質接面有機太陽能電池工作原理示意圖 12 圖2-2激子拆解示意圖 13 圖2-3有機太陽能電池等效電路示意圖 15 圖2-4有機太陽能電池光電流對電壓曲線 16 圖2-5施體與受體能階差算開路電壓示意圖 17 圖2-6有機太陽能電池串聯電阻與並聯電阻計算方式 19 圖3-1超音波清洗機 20 圖3-2烤盤 21 圖3-3旋轉塗佈機 21 圖3-4紫外光曝光機 22 圖3-5材料純化系統 23 圖3-6高真空熱蒸鍍機 23 圖3-7氮氣循環手套箱 25 圖3-8黃光微影示意圖 26 圖3-9金屬遮罩 29 圖3-10元件示意圖 29 圖3-11封裝示意圖 30 圖3-12膜厚儀 31 圖3-13橢圓偏振儀 31 圖3-14太陽光模擬器量測系統 32 圖3-15外部量子效率量測系統 33 圖3-16 UV-VIS光譜儀 34 圖3-17原子力顯微鏡 34 圖3-18四點探針 35 圖4-1有機材料之分子結構圖 36 圖4-2將ClAlPc與C60之吸收係數頻譜 37 圖4-3 Cu:Ag (1:60, 8 nm)與Ag (8 nm)之反射頻譜 38 圖4-4 (a) Cu:Ag (1:60, 8 nm)與(b) Ag (8 nm)之表面形貌 39 圖4-5在未退火下與分別退火100℃、時間為30、60與90分鐘之(a)Ag (8 nm)、(c) Cu:Ag (1:60, 8 nm)與(e) Cu (8 nm)穿透頻譜,(b) Ag (8 nm)、(d) Cu:Ag (1:60, 8 nm)與(f) Cu (8 nm)之反射頻譜 40 圖4-6 Cu:Ag (1:60, 8 nm)之穿透頻譜 41 圖4-7 8 nm厚度下,不同比例Cu:Ag之反射頻譜 41 圖4-8不同Capping layer厚度下之銅銀電極的穿透頻譜與反射頻譜 42 圖4-9將Cu:Ag (1:60, 8 nm)/WO3 (20 nm)做成大面積並最做為導線驅動LED 43 圖4-10不同比例主動層元件之光電流特性曲線 44 圖4-11不同比例主動層元件的外部量子效率曲線圖 45 圖4-12不同厚度主動層元件的光電流特性曲線 46 圖4-13不同厚度主動層元件的外部量子效率曲線圖 47 圖4-14不同厚度主動層薄膜之穿透頻譜 48 圖4-15不同厚度之穿透電極元件的光電流特性曲線 49 圖4-16不同厚度之穿透電極元件的外部量子效率曲線圖 50 圖4-17穿透式有機太陽能電池之穿透頻譜與明視覺頻譜圖 51 圖4-18最佳化元件之穿透頻譜、反射頻譜、EQE與明視覺頻譜圖 52 圖4-19穿透式有機太陽能電池元件圖 52 圖4-20非穿透式串座元件的光電流特性曲線 53 圖4-21穿透式串座元件的光電流特性曲線 55 表目錄 表1-1 穿透式OPV文獻回顧 10 表4-1 不同比例主動層元件特性整理 44 表4-2不同厚度主動層元件特性整理 47 表4-3不同厚度之穿透電極元件特性整理 49 表4-4穿透式有機太陽能電池之光學特性 51 表4-5非穿透式串座元件特性之整理 54 表4-6穿透式串座元件特性之整理, 55

    [1] M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, H.D. Lightfoot, W. Manheimer, J.C. Mankins, M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, T.M.L. Wigley, Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet, Science, 298 (2002) 981.
    [2] M.A. Green, Third generation photovoltaics: Ultra-high conversion efficiency at low cost, Progress in Photovoltaics: Research and Applications, 9 (2001) 123-135.
    [3] N.S. Lewis, Toward Cost-Effective Solar Energy Use, Science, 315 (2007) 798.
    [4] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters, 51 (1987) 913-915.
    [5] M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395 (1998) 151-154.
    [6] C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials, Applied Physics Letters, 77 (2000) 904-906.
    [7] A. Tsumura, H. Koezuka, T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film, Applied Physics Letters, 49 (1986) 1210-1212.
    [8] G. Horowitz, Field-effect transistors based on short organic molecules, Journal of Materials Chemistry, 9 (1999) 2021-2026.
    [9] Y. Shao, Y. Yang, Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials, Advanced Materials, 17 (2005) 2841-2844.
    [10] I. Visoly-Fisher, A. Mescheloff, M. Gabay, C. Bounioux, L. Zeiri, M. Sansotera, A.E. Goryachev, A. Braun, Y. Galagan, E.A. Katz, Concentrated sunlight for accelerated stability testing of organic photovoltaic materials: towards decoupling light intensity and temperature, Solar Energy Materials and Solar Cells, 134 (2015) 99-107.
    [11] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, 2.5% efficient organic plastic solar cells, Applied Physics Letters, 78 (2001) 841-843.
    [12] S.R. Forrest, Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques, Chemical Reviews, 97 (1997) 1793-1896.
    [13] F.C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Organic Electronics, 10 (2009) 761-768.
    [14] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, Journal of Materials Chemistry, 19 (2009) 5442.
    [15] F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration, Solar Energy Materials and Solar Cells, 93 (2009) 422-441.
    [16] J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy & Environmental Science, 6 (2013) 1739.
    [17] M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, Small-molecule solar cells-status and perspectives, Nanotechnology, 19 (2008) 424001.
    [18] Y. Yi, V. Coropceanu, J.-L. Brédas, Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry, Journal of the American Chemical Society, 131 (2009) 15777-15783.
    [19] P.B. Miranda, D. Moses, A.J. Heeger, Ultrafast photogeneration of charged polarons in conjugated polymers, Physical Review B, 64 (2001).
    [20] X. Gong, J.C. Ostrowski, G.C. Bazan, D. Moses, A.J. Heeger, Red electrophosphorescence from polymer doped with iridium complex, Applied Physics Letters, 81 (2002) 3711-3713.
    [21] B.A. Gregg, M.C. Hanna, Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation, Journal of Applied Physics, 93 (2003) 3605-3614.
    [22] R. Sokel, R.C. Hughes, Numerical analysis of transient photoconductivity in insulators, Journal of Applied Physics, 53 (1982) 7414-7424.
    [23] D. Kearns, M. Calvin, Photovoltaic Effect and Photoconductivity in Laminated Organic Systems, The Journal of Chemical Physics, 29 (1958) 950-951.
    [24] C.W. Tang, A.C. Albrecht, Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells, The Journal of Chemical Physics, 62 (1975) 2139-2149.
    [25] G.A. Chamberlain, Organic solar cells: A review, Solar Cells, 8 (1983) 47-83.
    [26] D. Wöhrle, D. Meissner, Organic Solar Cells, Advanced Materials, 3 (1991) 129-138.
    [27] C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 48 (1986) 183-185.
    [28] P. Peumans, V. Bulović, S.R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Applied Physics Letters, 76 (2000) 2650-2652.
    [29] H. Kurczewska, H. Bässler, Energy transfer across an anthracene-gold interface, Journal of Luminescence, 15 (1977) 261-266.
    [30] V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Müllen, B.R. Hsieh, C.W. Tang, Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition, Applied Physics Letters, 69 (1996) 1492-1494.
    [31] V.-E. Choong, Y. Park, Y. Gao, B.R. Hsieh, C.W. Tang, Metal induced photoluminescence quenching of a phenylene vinylene oligomer and its recovery, Macromolecular Symposia, 125 (1998) 83-97.
    [32] D.F. O’Brien, M.A. Baldo, M.E. Thompson, S.R. Forrest, Improved energy transfer in electrophosphorescent devices, Applied Physics Letters, 74 (1999) 442-444.
    [33] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270 (1995) 1789.
    [34] B.P. Rand, J. Xue, F. Yang, S.R. Forrest, Organic solar cells with sensitivity extending into the near infrared, Applied Physics Letters, 87 (2005) 233508.
    [35] T. Tsuzuki, Y. Shirota, J. Rostalski, D. Meissner, The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Solar Energy Materials and Solar Cells, 61 (2000) 1-8.
    [36] S. Uchida, J. Xue, B.P. Rand, S.R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer, Applied Physics Letters, 84 (2004) 4218-4220.
    [37] P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 425 (2003) 158-162.
    [38] M. Hiramoto, H. Fujiwara, M. Yokoyama, Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments, Applied Physics Letters, 58 (1991) 1062-1064.
    [39] M. Hiramoto, H. Fujiwara, M. Yokoyama, p‐i‐nlike behavior in three‐layered organic solar cells having a co‐deposited interlayer of pigments, Journal of Applied Physics, 72 (1992) 3781-3787.
    [40] D. Wynands, B. Männig, M. Riede, K. Leo, E. Brier, E. Reinold, P. Bäuerle, Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene, Journal of Applied Physics, 106 (2009) 054509.
    [41] J. Xue, B.P. Rand, S. Uchida, S.R. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell, Advanced Materials, 17 (2005) 66-71.
    [42] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films, Applied Physics Letters, 95 (2009) 123301.
    [43] K.V. Chauhan, P. Sullivan, J.L. Yang, T.S. Jones, Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions, The Journal of Physical Chemistry C, 114 (2010) 3304-3308.
    [44] I. Hancox, K.V. Chauhan, P. Sullivan, R.A. Hatton, A. Moshar, C.P.A. Mulcahy, T.S. Jones, Increased efficiency of small molecule photovoltaic cells by insertion of a MoO3hole-extracting layer, Energy & Environmental Science, 3 (2010) 107-110.
    [45] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer, Applied Physics Letters, 93 (2008) 221107.
    [46] D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, M. Pfeiffer, Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends, Solar Energy Materials and Solar Cells, 79 (2003) 81-92.
    [47] S. Yoo, B. Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions, Applied Physics Letters, 85 (2004) 5427-5429.
    [48] C.-W. Chu, Y. Shao, V. Shrotriya, Y. Yang, Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions, Applied Physics Letters, 86 (2005) 243506.
    [49] J. Dai, X. Jiang, H. Wang, D. Yan, Organic photovoltaic cells with near infrared absorption spectrum, Applied Physics Letters, 91 (2007) 253503.
    [50] R.F. Salzman, J. Xue, B.P. Rand, A. Alexander, M.E. Thompson, S.R. Forrest, The effects of copper phthalocyanine purity on organic solar cell performance, Organic Electronics, 6 (2005) 242-246.
    [51] H. Kumar, P. Kumar, R. Bhardwaj, G.D. Sharma, S. Chand, S.C. Jain, V. Kumar, Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices, Journal of Physics D: Applied Physics, 42 (2009) 015103.
    [52] X. Sun, Y. Liu, X. Xu, C. Yang, G. Yu, S. Chen, Z. Zhao, W. Qiu, Y. Li, D. Zhu, Novel Electroactive and Photoactive Molecular Materials Based on Conjugated Donor−Acceptor Structures for Optoelectronic Device Applications, The Journal of Physical Chemistry B, 109 (2005) 10786-10792.
    [53] A. Cravino, P. Leriche, O. Alévêque, S. Roquet, J. Roncali, Light-Emitting Organic Solar Cells Based on a 3D Conjugated System with Internal Charge Transfer, Advanced Materials, 18 (2006) 3033-3037.
    [54] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60, Advanced Materials, 18 (2006) 2872-2875.
    [55] K.L. Mutolo, E.I. Mayo, B.P. Rand, S.R. Forrest, M.E. Thompson, Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells, Journal of the American Chemical Society, 128 (2006) 8108-8109.
    [56] R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine, Applied Physics Letters, 91 (2007) 013508.
    [57] J.W. Arbogast, A.P. Darmanyan, C.S. Foote, F.N. Diederich, R.L. Whetten, Y. Rubin, M.M. Alvarez, S.J. Anz, Photophysical properties of sixty atom carbon molecule (C60), The Journal of Physical Chemistry, 95 (1991) 11-12.
    [58] B. Miller, J.M. Rosamilia, G. Dabbagh, R. Tycko, R.C. Haddon, A.J. Muller, W. Wilson, D.W. Murphy, A.F. Hebard, Photoelectrochemical behavior of C60 films, Journal of the American Chemical Society, 113 (1991) 6291-6293.
    [59] S. Morita, A.A. Zakhidov, K. Yoshino, Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene, Solid State Communications, 82 (1992) 249-252.
    [60] M.R. Fraelich, R.B. Weisman, Triplet states of fullerene C60 and C70 in solution: long intrinsic lifetimes and energy pooling, The Journal of Physical Chemistry, 97 (1993) 11145-11147.
    [61] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science, 258 (1992) 1474.
    [62] E. Frankevich, Y. Maruyama, H. Ogata, Mobility of charge carriers in vapor-phase grown C60 single crystal, Chemical Physics Letters, 214 (1993) 39-44.
    [63] L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics, 86 (1999) 487-496.
    [64] N.S. Sariciftci, Role of Buckminsterfullerene, C60, in organic photoelectric devices, Progress in Quantum Electronics, 19 (1995) 131-159.
    [65] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell, Applied Physics Letters, 68 (1996) 3120-3122.
    [66] P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Applied Physics Letters, 79 (2001) 126-128.
    [67] M. Vogel, S. Doka, C. Breyer, M.C. Lux-Steiner, K. Fostiropoulos, On the function of a bathocuproine buffer layer in organic photovoltaic cells, Applied Physics Letters, 89 (2006) 163501.
    [68] K. Kuhnke, R. Becker, M. Epple, K. Kern, C60 Exciton Quenching near Metal Surfaces, Physical Review Letters, 79 (1997) 3246-3249.
    [69] H.R. Wu, M.L. Wang, Q.L. Song, Y. Wu, Z.T. Xie, X.D. Gao, X.M. Ding, X.Y. Hou, Short-circuiting in fullerene devices studied by in situ electrical measurement in high vacuum and infrared imaging analysis, Current Applied Physics, 7 (2007) 231-235.
    [70] N. Wang, J. Yu, Y. Zang, J. Huang, Y. Jiang, Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60, Solar Energy Materials and Solar Cells, 94 (2010) 263-266.
    [71] R.R. Lunt, V. Bulovic, Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications, Applied Physics Letters, 98 (2011) 113305.
    [72] K.-S. Chen, J.-F. Salinas, H.-L. Yip, L. Huo, J. Hou, A.K.Y. Jen, Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications, Energy & Environmental Science, 5 (2012) 9551.
    [73] C.-C. Chen, L. Dou, R. Zhu, C.-H. Chung, T.-B. Song, Y.B. Zheng, S. Hawks, G. Li, P.S. Weiss, Y. Yang, Visibly Transparent Polymer Solar Cells Produced by Solution Processing, ACS Nano, 6 (2012) 7185-7190.
    [74] C.-C. Chen, L. Dou, J. Gao, W.-H. Chang, G. Li, Y. Yang, High-performance semi-transparent polymer solar cells possessing tandem structures, Energy & Environmental Science, 6 (2013) 2714.
    [75] C.-C. Chueh, S.-C. Chien, H.-L. Yip, J.F. Salinas, C.-Z. Li, K.-S. Chen, F.-C. Chen, W.-C. Chen, A.K.Y. Jen, Toward High-Performance Semi-Transparent Polymer Solar Cells: Optimization of Ultra-Thin Light Absorbing Layer and Transparent Cathode Architecture, Advanced Energy Materials, 3 (2013) 417-423.
    [76] P. Shen, G. Wang, B. Kang, W. Guo, L. Shen, High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance, ACS Applied Materials & Interfaces, 10 (2018) 6513-6520.
    [77] D. Liu, C. Yang, R.R. Lunt, Halide Perovskites for Selective Ultraviolet-Harvesting Transparent Photovoltaics, Joule, 2 (2018) 1827-1837.
    [78] Y. Liu, P. Cheng, T. Li, R. Wang, Y. Li, S.Y. Chang, Y. Zhu, H.W. Cheng, K.H. Wei, X. Zhan, B. Sun, Y. Yang, Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis, ACS Nano, 13 (2019) 1071-1077.
    [79] D. Liu, C. Yang, P. Chen, M. Bates, S. Han, P. Askeland, R.R. Lunt, Lead Halide Ultraviolet-Harvesting Transparent Photovoltaics with an Efficiency Exceeding 1%, ACS Applied Energy Materials, 2 (2019) 3972-3978.
    [80] Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou, C.Z. Li, L.S. Liao, L.J. Guo, S.R. Forrest, Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture, Advanced Materials, 31 (2019) 1903173.
    [81] I.G. Hill, A. Kahn, Z.G. Soos, J.R.A. Pascal, Charge-separation energy in films of π-conjugated organic molecules, Chemical Physics Letters, 327 (2000) 181-188.
    [82] M. Knupfer, Exciton binding energies in organic semiconductors, Applied Physics A, 77 (2003) 623-626.
    [83] S.-B. Rim, R.F. Fink, J.C. Schöneboom, P. Erk, P. Peumans, Effect of molecular packing on the exciton diffusion length in organic solar cells, Applied Physics Letters, 91 (2007) 173504.
    [84] B. Leckner, The spectral distribution of solar radiation at the earth's surface—elements of a model, Solar Energy, 20 (1978) 143-150.
    [85] P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, 93 (2003) 3693-3723.
    [86] P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells, Advanced Materials, 19 (2007) 1551-1566.
    [87] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D.D.C. Bradley, J.R. Durrant, Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy, Journal of the American Chemical Society, 130 (2008) 3030-3042.
    [88] J.-L. Bredas, Molecular understanding of organic solar cells: The challenges, Accounts of Chemical Research,42 (2009) 1691–1699.
    [89] N. Li, B.E. Lassiter, R.R. Lunt, G. Wei, S.R. Forrest, Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells, Applied Physics Letters, 94 (2009) 023307.
    [90] B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar cells utilizing small molecular weight organic semiconductors, Progress in Photovoltaics: Research and Applications, 15 (2007) 659-676.
    [91] C. Kulshreshtha, J.W. Choi, J.-k. Kim, W.S. Jeon, M.C. Suh, Y. Park, J.H. Kwon, Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells, Applied Physics Letters, 99 (2011) 023308.
    [92] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview, Journal of Materials Research, 19 (2011) 1924-1945.
    [93] B. Qi, J. Wang, Fill factor in organic solar cells, Physical Chemistry Chemical Physics, 15 (2013) 8972-8982.
    [94] K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim, ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode, Thin Solid Films, 341 (1999) 152-155.
    [95] D.R. Sahu, S.-Y. Lin, J.-L. Huang, Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation, Solar Energy Materials and Solar Cells, 91 (2007) 851-855.
    [96] C.T. Campbell, Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties, Surface Science Reports, 27 (1997) 1-111.
    [97] A. Anders, E. Byon, D.-H. Kim, K. Fukuda, S.H.N. Lim, Smoothing of ultrathin silver films by transition metal seeding, Solid State Communications, 140 (2006) 225-229.
    [98] H. Liu, B. Wang, E.S.P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, S.A. Maier, Enhanced Surface Plasmon Resonance on a Smooth Silver Film with a Seed Growth Layer, ACS Nano, 4 (2010) 3139-3146.
    [99] B. Jiri, N. Michal, L. Anna, L. Jan, Preparation of nanostructured ultrathin silver layer, Journal of Nanophotonics, 5 (2011) 1-11.
    [100] Y.G. Bi, Y.F. Liu, X.L. Zhang, D. Yin, W.Q. Wang, J. Feng, H.B. Sun, Ultrathin Metal Films as the Transparent Electrode in ITO‐Free Organic Optoelectronic Devices, Advanced Optical Materials, 7 (2019) 1800778.
    [101] S.-W. Liu, T.-H. Su, P.-C. Chang, T.-H. Yeh, Y.-Z. Li, L.-J. Huang, Y.-H. Chen, C.-F. Lin, ITO-free, efficient, and inverted phosphorescent organic light-emitting diodes using a WO3/Ag/WO3 multilayer electrode, Organic Electronics, 31 (2016) 240-246.
    [102] S.-W. Liu, T.-H. Su, Y.-Z. Li, Ultra-thin and graded sliver electrodes for use in transparent pentacene field-effect transistors, Organic Electronics, 15 (2014) 1990-1997.
    [103] T.-H. Yeh, C.-C. Lee, C.-J. Shih, G. Kumar, S. Biring, S.-W. Liu, Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes, Organic Electronics, 59 (2018) 266-271.
    [104] K. Kawano, C. Adachi, Evaluating Carrier Accumulation in Degraded Bulk Heterojunction Organic Solar Cells by a Thermally Stimulated Current Technique, Advanced Functional Materials, 19 (2009) 3934-3940.
    [105] P. Kumar, H. Kumar, S.C. Jain, P. Venkatesu, S. Chand, V. Kumar, Effect of Active Layer Thickness on Open Circuit Voltage in Organic Photovoltaic Devices, Japanese Journal of Applied Physics, 48 (2009) 121501.

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE