簡易檢索 / 詳目顯示

研究生: Ilham Wahdini
Ilham Wahdini
論文名稱: 以聚乙烯吡咯烷酮為分散劑和無色透明聚醯亞胺 作為柔性透明電極保護層及其銅奈米線性能之研究
Study of the Performances of Copper Nanowires Using Polyvinylpyrrolidone as Capping Agent and Polyimide as Protecting Layer for Flexible Transparent Electrode
指導教授: 戴龑
Yian Tai
口試委員: 陳志堅
Jyh-Chien Chen
王澤元
Tse-Yuan Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 81
中文關鍵詞: 銅奈米線分散劑聚乙烯吡咯烷酮透明導電膜氧化機制保護層無色聚酰亞胺
外文關鍵詞: Copper nanowires, Capping agent, Polyvinylpyrrolidone, Transparent conducting electrode, Oxidation mechanism, Protecting layer, Colorless Polyimide
相關次數: 點閱:240下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於銅在自然界的含量相對豐富並具有柔韌性以及溶液相奈米線塗覆工藝的薄膜具有良好穿透度和低電阻,故溶液合成銅奈米線的透明導電膜具有較高可能性取代氧化銦錫導電膜。然而,熱不穩定性和易氧化性阻礙了銅奈米線的透明導電膜的實際應用。在本文中,我們研究了分散劑(即聚乙烯吡咯烷酮,PVP)對水熱製備的Cu奈米線的影響。對具有/不具有PVP的銅奈米線進行了比較研究。對氧化機制的研究表明,與PVP化學鍵結的銅奈米線很容易形成氧化並使得奈米線的表面易形成氧化物/氫氧化物,影響透明導電電極的穩定性。最後,我們將Cu NWs薄膜表面上簡單塗覆無色聚酰亞胺(CPI)來解決Cu NWs薄膜的氧化問題。研究表明,Cu NWs薄膜有CPI保護層在一般環境條件下能夠存活3個月以上。


    Transparent conducting films of solution-processed copper nanowires (Cu NWs) are an attractive alternative to indium tin oxide due to the relative abundance of Cu, moderate flexibility, small sheet resistance, and good transmittance and low cost of solution-phase nanowire coating processes. However, thermal instability and the ease of oxidation hinder the practical applications of Cu NWs films. In this article, we investigate the effect of capping agent (i.e., polyvinylpyrrolidone, PVP) on hydrothermally prepared Cu nanowires. Comparative studies are presented for Cu nanowires dispersed with/without PVP. A study of the oxidation mechanism reveals that the copper nanowires anchored with PVP will easily form surface oxide/hydroxide which are oxide into nanowires and influence stability of transparent conducting electrode. Finally, we also solved the oxidation problem of Cu NWs film by simple coating of colorless polyimide (CPI) on the surface of Cu NWs film. The study revealed that with CPI protecting layer is able to survived longer than 3 months in ambient condition.

    Abstract iii 摘要 iv Acknowledgement v Content vi List of Figures viii List of tables x Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2.1. Flexible Transparent Conducting Electrode (TCE) Materials 3 2.2. Copper Nanowires (Cu NWs) Synthesis and Its Application as TCE 4 2.3. Polyvinvlpyrrolidone (PVP) in Cu NWs Synthesis 7 2.4. Protection of Cu NWs Film Against Oxidation 9 Chapter 3. Experimental 13 3.1. Chemicals 13 3.1.1. Copper nanowires synthesis 13 3.1.2. Fabrication copper nanowires thin film 13 3.1.3. Protecting layer deposition for Cu NWs film 14 3.2. Equipment and Instruments 14 3.3. Experimental Procedures 15 3.3.1. Copper nanowires synthesis 15 3.3.2. Fabrication copper nanowires thin film 16 3.3.3. Protecting layer deposition for Cu NWs film 16 3.4. Characterization Techniques 17 3.4.1. Transmission Electron Microscopy (TEM) 17 3.4.2. X-Ray powder diffraction (XRD) 17 3.4.3. Field Emission Scanning Electron Microscopy (FE-SEM) 17 3.4.4. UV-Visible spectroscopy 17 3.4.5. Hall measurement effect 17 3.4.6. X-ray Photoelectron Spectroscopy (XPS) 17 3.4.7. Atomic Force Microscopy (AFM) 18 Chapter 4. Results and Discussion 19 4.1. Copper Nanowires Synthesis and Its Characterization 19 4.2. Cu NWs Transparent Thin Film Electrode 23 4.3. Polyvinylpyrrolidone (PVP) Effect in Cu NWs Film 28 4.3.1. Synthesis Cu NWs with PVP 28 4.3.2. Cu NWs film conductivity with PVP 32 4.3.3. Stability Cu NWs film with PVP 34 4.3.4. Mechanism of PVP effect in Cu NWs 51 4.4. Protecting Cu NWs Film from Oxidation 54 4.4.1. Conductivity and stability of Cu NWs with protecting layer 54 4.4.2. Stability Cu NWs film with protecting layer in high temperature 59 Chapter 5. Conclusions and Outlooks 64 5.1. Conclusions 64 5.2. Outlooks 64 References 66

    [1] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, D.-S. Seo, Transparent conductive Al-doped ZnO films for liquid crystal displays, Journal of Applied Physics, 99 (2006) 124505.
    [2] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices and Microstructures, 48 (2010) 458-484.
    [3] C. Hou, T. Huang, H. Wang, H. Yu, Q. Zhang, Y. Li, A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications, Scientific Reports, 3 (2013) 3138.
    [4] Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Silver Nanowire-Polymer Composite Electrodes for Efficient Polymer Solar Cells, Advanced Materials, 23 (2011) 4453-4457.
    [5] J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T.-S. Kim, D. Lee, S.H. Ko, Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application, Advanced Functional Materials, 23 (2013) 4171-4176.
    [6] H. Stoyanov, M. Kollosche, S. Risse, R. Waché, G. Kofod, Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles, Advanced Materials, 25 (2013) 578-583.
    [7] R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, Tin doped indium oxide thin films: Electrical properties, Journal of Applied Physics, 83 (1998) 2631-2645.
    [8] R.G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bulletin, 25 (2000) 52-57.
    [9] P. Kou, L. Yang, C. Chang, S. He, Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach, Scientific Reports, 7 (2017) 42052.
    [10] Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives, Science and Technology of Advanced Materials, 17 (2016) 493-516.
    [11] Q. Zheng, Z. Li, J. Yang, J.-K. Kim, Graphene oxide-based transparent conductive films, Progress in Materials Science, 64 (2014) 200-247.
    [12] G.U. Kulkarni, S. Kiruthika, R. Gupta, K.D.M. Rao, Towards low cost materials and methods for transparent electrodes, Current Opinion in Chemical Engineering, 8 (2015) 60-68.
    [13] L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.-T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H.F. Haneef, N.J. Podraza, Moses H.W. Chan, V. Gopalan, K.M. Rabe, R. Engel-Herbert, Correlated metals as transparent conductors, Nature Materials, 15 (2015) 204.
    [14] C. Kim, W. Gu, M. Briceno, I.M. Robertson, H. Choi, K. Kim, Copper Nanowires with a Five-Twinned Structure Grown by Chemical Vapor Deposition, Advanced Materials, 20 (2008) 1859-1863.
    [15] D. Haase, S. Hampel, A. Leonhardt, J. Thomas, N. Mattern, B. Büchner, Facile one-step-synthesis of carbon wrapped copper nanowires by thermal decomposition of Copper(II)–acetylacetonate, Surface and Coatings Technology, 201 (2007) 9184-9188.
    [16] A. Khalil, R. Hashaikeh, M. Jouiad, Synthesis and morphology analysis of electrospun copper nanowires, Journal of Materials Science, 49 (2014) 3052-3065.
    [17] R. Wang, H. Ruan, Synthesis of copper nanowires and its application to flexible transparent electrode, Journal of Alloys and Compounds, 656 (2016) 936-943.
    [18] C.M. Phan, H.M. Nguyen, Role of Capping Agent in Wet Synthesis of Nanoparticles, The Journal of Physical Chemistry A, 121 (2017) 3213-3219.
    [19] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Transactions, 44 (2015) 17883-17905.
    [20] Z. Zhang, B. Zhao, L. Hu, PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes, Journal of Solid State Chemistry, 121 (1996) 105-110.
    [21] R. Si, Y.-W. Zhang, L.-P. You, C.-H. Yan, Self-Organized Monolayer of Nanosized Ceria Colloids Stabilized by Poly(vinylpyrrolidone), The Journal of Physical Chemistry B, 110 (2006) 5994-6000.
    [22] S. Li, Y. Chen, L. Huang, D. Pan, Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure Cooker and Their Application in Transparent and Conductive Networks, Inorganic Chemistry, 53 (2014) 4440-4444.
    [23] H. Ruan, R. Wang, Y. Luo, H. Liu, T. Han, L. Yang, Study on synthesis and growth mechanism of copper nanowires via a facile oleylamine-mediated process, 2016.
    [24] L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, J. Sun, A long-term oxidation barrier for copper nanowires: graphene says yes, Physical Chemistry Chemical Physics, 17 (2015) 4231-4236.
    [25] A.R. Rathmell, M. Nguyen, M. Chi, B.J. Wiley, Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks, Nano Letters, 12 (2012) 3193-3199.
    [26] J. Song, J. Li, J. Xu, H. Zeng, Superstable Transparent Conductive Cu@Cu4Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics, Nano Letters, 14 (2014) 6298-6305.
    [27] Z. Chen, S. Ye, I.E. Stewart, B.J. Wiley, Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance, ACS Nano, 8 (2014) 9673-9679.
    [28] Y. Ahn, Y. Jeong, D. Lee, Y. Lee, Copper Nanowire–Graphene Core–Shell Nanostructure for Highly Stable Transparent Conducting Electrodes, ACS Nano, 9 (2015) 3125-3133.
    [29] P.-C. Hsu, H. Wu, T.J. Carney, M.T. McDowell, Y. Yang, E.C. Garnett, M. Li, L. Hu, Y. Cui, Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes, ACS Nano, 6 (2012) 5150-5156.
    [30] C.R. Chu, C. Lee, J. Koo, H.M. Lee, Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Research, 9 (2016) 2162-2173.
    [31] M. Vosgueritchian, J. Lipomi Darren, Z. Bao, Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes, Advanced Functional Materials, 22 (2011) 421-428.
    [32] D. Moon Geon, G.H. Lim, H. Song Jun, M. Shin, T. Yu, B. Lim, U. Jeong, Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets, Advanced Materials, 25 (2013) 2707-2712.
    [33] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D.-L. Peng, Copper Nanowires as Fully Transparent Conductive Electrodes, Scientific Reports, 3 (2013) 2323.
    [34] A.R. Rathmell, B.J. Wiley, The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates, Advanced Materials, 23 (2011) 4798-4803.
    [35] I.E. Stewart, A.R. Rathmell, L. Yan, S. Ye, P.F. Flowers, W. You, B.J. Wiley, Solution-processed copper-nickel nanowire anodes for organic solar cells, Nanoscale, 6 (2014) 5980-5988.
    [36] H.D. S., H. Liangbing, I. Glen, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Advanced Materials, 23 (2011) 1482-1513.
    [37] B. O’Connor, C. Haughn, K.-H. An, K.P. Pipe, M. Shtein, Transparent and conductive electrodes based on unpatterned, thin metal films, Applied Physics Letters, 93 (2008) 223304.
    [38] G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O'Connell, P. Trefonas, The optical and electrical properties of silver nanowire mesh films, Journal of Applied Physics, 114 (2013) 024302.
    [39] S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films, Nanoscale, 4 (2012) 1996-2004.
    [40] H.S. Virk, K. Kishore, V. Balouria, Fabrication of Copper Nanowires by Electrodeposition Using Anodic Alumina and Polymer Templates, Journal of Nano Research, 10 (2010) 63-67.
    [41] H.-C. Chuang, G.-Y. Hong, J. Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing, 45 (2016) 17-26.
    [42] X. Guo, C.W. Guo, C. Wang, C. Li, X.M. Sun, AlGaInP LED with low-speed spin-coating silver nanowires as transparent conductive layer, Nanoscale Research Letters, 9 (2014) 670.
    [43] C. Hwang, J. An, B.D. Choi, K. Kim, S.-W. Jung, K.-J. Baeg, M.-G. Kim, K.M. Ok, J. Hong, Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode, Journal of Materials Chemistry C, 4 (2016) 1441-1447.
    [44] H.-C. Chu, Y.-C. Chang, Y. Lin, S.-H. Chang, W.-C. Chang, G.-A. Li, H.-Y. Tuan, Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications, ACS Applied Materials & Interfaces, 8 (2016) 13009-13017.
    [45] N.-H. Tran, T.-H. Duong, H.-C. Kim, A fast fabrication of copper nanowire transparent conductive electrodes by using pulsed laser irradiation, Scientific Reports, 7 (2017) 15093.
    [46] T.-H. Duong, H.-C. Kim, Extremely Simple and Rapid Fabrication of Flexible Transparent Electrodes Using Ultralong Copper Nanowires, Industrial & Engineering Chemistry Research, 57 (2018) 3076-3082.
    [47] Z. Zhu, T.S. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, C.M. Falco, Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites, SPIE Solar Energy + Technology, SPIE, 2014, pp. 6.
    [48] R. Wang, H. Zhai, T. Wang, X. Wang, Y. Cheng, L. Shi, J. Sun, Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors, Nano Research, 9 (2016) 2138-2148.
    [49] Q. Lonne, J. Endrino, Z. Huang, UV Treatment of Flexible Copper Nanowire Mesh Films for Transparent Conductor Applications, Nanoscale Research Letters, 12 (2017) 577.
    [50] S.V. Jadhav, D.S. Nikam, V.M. Khot, N.D. Thorat, M.R. Phadatare, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia, New Journal of Chemistry, 37 (2013) 3121-3130.
    [51] J. Xian, Q. Hua, Z. Jiang, Y. Ma, W. Huang, Size-Dependent Interaction of the Poly(N-vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals, Langmuir, 28 (2012) 6736-6741.
    [52] N. Arahman, A. Fahrina, S. Amalia, R. Sunarya, S. Mulyati, Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal [version 2; referees: 2 approved], 2017.
    [53] C. Graf, S. Dembski, A. Hofmann, E. Rühl, A General Method for the Controlled Embedding of Nanoparticles in Silica Colloids, Langmuir, 22 (2006) 5604-5610.
    [54] A. Kyrychenko, O.M. Korsun, I.I. Gubin, S.M. Kovalenko, O.N. Kalugin, Atomistic Simulations of Coating of Silver Nanoparticles with Poly(vinylpyrrolidone) Oligomers: Effect of Oligomer Chain Length, The Journal of Physical Chemistry C, 119 (2015) 7888-7899.
    [55] X. Xia, J. Zeng, L.K. Oetjen, Q. Li, Y. Xia, Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals, Journal of the American Chemical Society, 134 (2012) 1793-1801.
    [56] T.A. R., H. Susan, Y. Peidong, Shape Control of Colloidal Metal Nanocrystals, Small, 4 (2008) 310-325.
    [57] Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 298 (2002) 2176.
    [58] B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, L.J. Guo, Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes, Journal of Materials Chemistry A, 4 (2016) 11365-11371.
    [59] S. Guo, E. Wang, One-Pot, High-Yield Synthesis of Size-Controlled Gold Particles with Narrow Size Distribution, Inorganic Chemistry, 46 (2007) 6740-6743.
    [60] K. Franklin, C. Stephen, S. Hyunjoon, K. Tevye, Y. Peidong, Platonic Gold Nanocrystals, Angewandte Chemie International Edition, 43 (2004) 3673-3677.
    [61] Y.-Q. Liu, M. Zhang, F.-X. Wang, G.-B. Pan, Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity, RSC Advances, 2 (2012) 11235-11237.
    [62] D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, Y. Lu, Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes, Journal of the American Chemical Society, 134 (2012) 14283-14286.
    [63] H.-J. Yang, S.-Y. He, H.-Y. Tuan, Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications, Langmuir, 30 (2014) 602-610.
    [64] Y. Zhao, Y. Zhang, Y. Li, Z. He, Z. Yan, Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs), RSC Advances, 2 (2012) 11544-11551.
    [65] B. Wiley, A. Rathmell, Composition and Methods for Growing Copper Nanowires, United States, 2013, pp. 11.
    [66] R.A. R., B.S. M., H. Yi‐Lei, L. Zhi‐Yuan, W.B. J., The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films, Advanced Materials, 22 (2010) 3558-3563.
    [67] T.-H. Duong, H.-C. Kim, A high productivity and speedy synthesis process for copper nanowires via an ethylenediamine-mediated method, International Nano Letters, 7 (2017) 165-169.
    [68] S. Ye, A.R. Rathmell, I.E. Stewart, Y.-C. Ha, A.R. Wilson, Z. Chen, B.J. Wiley, A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films, Chemical Communications, 50 (2014) 2562-2564.
    [69] S.D. Urszula, The oxidation of poly(vinyl pyrrolidone) with Ce(IV), Die Angewandte Makromolekulare Chemie, 118 (1983) 1-17.
    [70] H.-G. Im, S.-H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J.-Y. Lee, I.-D. Kim, B.-S. Bae, Flexible Transparent Conducting Hybrid Film Using a Surface-Embedded Copper Nanowire Network: A Highly Oxidation-Resistant Copper Nanowire Electrode for Flexible Optoelectronics, ACS Nano, 8 (2014) 10973-10979.
    [71] Polyimides, Ullmann's Encyclopedia of Industrial Chemistry.
    [72] C.-Y. Chou, H.-S. Liu, G.-S. Liou, Highly transparent silver nanowire-polyimide electrode as a snow-cleaning device, RSC Advances, 6 (2016) 61386-61392.
    [73] H.-Y. Lu, C.-Y. Chou, J.-H. Wu, J.-J. Lin, G.-S. Liou, Highly transparent and flexible polyimide-AgNW hybrid electrodes with excellent thermal stability for electrochromic applications and defogging devices, Journal of Materials Chemistry C, 3 (2015) 3629-3635.
    [74] M. Mohl, P. Pusztai, A. Kukovecz, Z. Konya, J. Kukkola, K. Kordas, R. Vajtai, P.M. Ajayan, Low-Temperature Large-Scale Synthesis and Electrical Testing of Ultralong Copper Nanowires, Langmuir, 26 (2010) 16496-16502.
    [75] Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process, The Journal of Physical Chemistry B, 107 (2003) 12658-12661.
    [76] M.R. Tan, M.D.L. Balela, Electrochemical Investigation of the Growth of Copper Nanowires in the Presence of Ethylenediamine through Mixed Potential, Journal of The Electrochemical Society, 164 (2017) D386-D393.
    [77] X. Huang, N. Zheng, One-Pot, High-Yield Synthesis of 5-Fold Twinned Pd Nanowires and Nanorods, Journal of the American Chemical Society, 131 (2009) 4602-4603.
    [78] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 304 (2004) 422-426.
    [79] M.A. Mahmoud, D. O’Neil, M.A. El-Sayed, Hollow and Solid Metallic Nanoparticles in Sensing and in Nanocatalysis, Chemistry of Materials, 26 (2014) 44-58.
    [80] S.C.R. Siggia Sidney, Purification of polyvinylpyrrolidone, in: G.C. Corp (Ed.), 1959.
    [81] L. Xu, Y. Yang, Z.-W. Hu, S.-H. Yu, Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid, ACS Nano, 10 (2016) 3823-3834.
    [82] J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-Processed Metal Nanowire Mesh Transparent Electrodes, Nano Letters, 8 (2008) 689-692.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE