簡易檢索 / 詳目顯示

研究生: 洪聖雄
SHENG HSIUNG HUNG
論文名稱: 兒茶酚功能化高分子之抗汙及抗菌性質研究
Catechol functionalized polymers for antifouling and antimicrobial study
指導教授: 維賈亞卡梅斯瓦拉.拉奧.內拉拉
Neralla Vijayakameswara Rao
口試委員: 維賈亞卡梅斯瓦拉.拉奧.內拉拉
李振綱
JEN-GANG LI
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 66
中文關鍵詞: ε-聚賴氨酸聚乙烯吡咯烷酮兒茶酚醯胺化反應抗汙抑菌
外文關鍵詞: poly(vinyl pyrrolidone), catechol, amide coupling
相關次數: 點閱:203下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文合成並研究三種具兒茶酚官能基之聚合物,CCDP-PVP(CP), DHCA-PLL-PVP(DPP), DHCA-PLL-PVP-CCDP(DPPC)。ε-聚賴氨酸以碳二亞胺類與羥基琥珀醯亞胺為偶聯劑與二氫咖啡酸和羧酸化聚乙烯吡咯烷酮進行醯胺化反應合成PLL-g-DHCA-g-PVP(DPP),利用聚乙烯吡咯烷酮上三級胺與含氯兒茶酚單體(CCDP)進行SN2反應合成CP,再以DPP與CCDP以SN2反應合成PLL-g-DHCA-g-PVP-g-CCDP(DPPC)。藉由IR, 1H-NMR, GPC鑑定合成結果,實驗表明IR 在1462 cm-1 有吸收峰表明四級銨鹽之碳氮鍵(C-N)伸縮震動(stretching)存在。由1H-NMR可觀測到聚合物DPPC有數個苯環之氫的化學位移,GPC結果亦顯示分子量增加,可推估為SN2反應可發生於聚合物DPP上導致。由BCA蛋白濃度法定量於高分子上兒茶酚胺濃度,並將聚合物各自塗佈於玻璃、PET膜與孔洞PP薄膜。
    應用性研究中,藉由接觸角測試得知DPPC塗佈之玻璃及PP薄膜接觸角分別為11.3°及36.2°,證實DPPC使表面更加具有親水性。抗汙測試中,BCA蛋白濃度法定量吸附於PP薄膜上的牛血清(BSA)蛋白吸附量,結果卻表明DPPC含有1126.51 μg/cm2 之蛋白吸附,推測是DPPC含有高於30% 之兒茶酚含量導致,氧化兒茶醌不利於表面塗佈,兒茶酚胺干擾BCA蛋白濃度法。過氧化氫經實驗表明可與表面的聚乙烯吡咯烷酮之雜環形成錯合物並經乙醇及清水潤洗後殘留,使過錳酸鉀還原退色。在抑菌圈測試中,DPPC具有明顯的抑制大腸桿菌生長(E.coli)菌圈。其亦有與碘錯合,抑菌效果優於碘酒精溶液。


    Catechol-branched polymers have been utilized in various synthetic routes. One of the purposes is to utilize adhesion ability for coating on different substrates. Poly(vinyl-pyrrolidone) is an excellent polymer applied to antifouling due to its hydrophilicity.
    The aim of the research is to synthesize a catechol functionalized ε-polylysine with poly(vinyl-pyrrolidone) pendant based on thiol-ene reaction and carbodiimide/N-hydroxysuccinimide activated coupling and get DPP. In addition, we coupled the catechol group by quaternary amine bond on the pyrrolidone ring to produce a multi-catechol polymer, DPPC, characterized by FT-IR, GPC, 1H-NMR. To investigate its antifouling and antimicrobial ability, we performed the contact angle test, and protein resistance test by BCA assay, and then applied the DPPC for substrate coating, such as glass, PET, PP membrane.
    The result showed that DPPC endowed substrates with hydrophilicity since the contact angle decreased to 11.3° and 36.2° respectively on glass and PP membranes. BCA assay indicated that DPPC coated pp membrane with high content of protein adsorbed (1126.51 μg/cm2). It can be referred that DPPC is not favorable on the substrate due to catechol content higher than 30%, prone to oxidized quinone formation. Hydrogen peroxide and iodine is proved to remain on the substrate which form complex by pyrrolidone pendant. In the inhibition test, E.coli was observed restrained by iodine released from povidone iodine complex in DPPC sample which is better than iodine ethanol solution.

    Abstract VI Acknowledgment VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Antifouling 2 1.3 Microbial infection 4 1.4 Aim of the research 5 Chapter 2 Literature Review 8 2.1 Catechol amine chemistry 8 2.2 Poly (vinyl pyrrolidone) and Poly(ε-lysine) 11 2.3 Thiol-ene Polymerization 12 2.4 Amide bond formation by coupling agents 13 2.5 SN2 Reaction 17 2.6 BCA protein assay 17 Chapter 3 Materials and methodology 19 3.1 Materials & Apparatus 19 3.2 Experimental methods 21 3.3 Brief introduction of instruments and equipment for characterization28 Chapter 4 Results and discussion 32 4.1 Synthesis and characterization of polymers 32 4.2 Application 39 Chapter 5 Conclusion and future work 50

    Reference
    1. Guo, W., H.-H. Ngo, and J. Li, A mini-review on membrane fouling. Bioresource Technology, 2012. 122: p. 27-34.
    2. Choi, J.S., et al., Electrospun Chitosan Microspheres for Complete Encapsulation of Anionic Proteins: Controlling Particle Size and Encapsulation Efficiency. AAPS PharmSciTech, 2013. 14(2): p. 794-801.
    3. Xing, C.-M., J.-P. Deng, and W.-T. Yang, Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone-iodine complex. Journal of Applied Polymer Science, 2005. 97(5): p. 2026-2031.
    4. Ikada, Y., Surface modification of polymers for medical applications. Biomaterials, 1994. 15(10): p. 725-736.
    5. Waite, J.H., et al., Mussel Adhesion: Finding the Tricks Worth Mimicking. The Journal of Adhesion, 2005. 81: p. 297 - 317.
    6. Magin, C.M., S.P. Cooper, and A.B. Brennan, Non-toxic antifouling strategies. Materials Today, 2010. 13(4): p. 36-44.
    7. Qiu, H., et al., Functional polymer materials for modern marine biofouling control. Progress in Polymer Science, 2022. 127: p. 101516.
    8. Wu, Z., et al., Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 2012. 96: p. 37-43.
    9. Le, T.-N. and C.-K. Lee, Surface Functionalization of Poly(N-Vinylpyrrolidone) onto Poly(Dimethylsiloxane) for Anti-Biofilm Application. Applied Biochemistry and Biotechnology, 2020. 191(1): p. 29-44.
    10. Qi, H., et al., A mussel-inspired chimeric protein as a novel facile antifouling coating. Chemical Communications, 2018. 54(80): p. 11328-11331.
    11. Gorbach, S.L., Probiotics and gastrointestinal health. The American Journal of Gastroenterology, 2000. 95(1, Supplement 1): p. S2-S4.
    12. Au-Duong, A.-N. and C.-K. Lee, Facile protein-resistant and anti-biofilm surface coating based on catechol-conjugated poly(N-vinylpyrrolidone). Colloid and Polymer Science, 2018. 296(7): p. 1173-1182.
    13. Le, T.-N., A.-N. Au-Duong, and C.-K. Lee, Facile coating on microporous polypropylene membrane for antifouling microfiltration using comb-shaped poly(N-vinylpyrrolidone) with multivalent catechol. Journal of Membrane Science, 2019. 574: p. 164-173.
    14. Waite, J.H. and M.L. Tanzer, Polyphenolic Substance of <i>Mytilus edulis</i>: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
    15. Kord Forooshani, P. and B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem, 2017. 55(1): p. 9-33.
    16. Lyu, Q., N. Hsueh, and C.L.L. Chai, The Chemistry of Bioinspired Catechol(amine)-Based Coatings. ACS Biomaterials Science & Engineering, 2019. 5(6): p. 2708-2724.
    17. Mosaiab, T., et al., Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering: C, 2013. 33(7): p. 3786-3794.
    18. Xu, M., et al., Single-step fabrication of catechol-ε-poly-L-lysine antimicrobial paint that prevents superbug infection and promotes osteoconductivity of titanium implants. Chemical Engineering Journal, 2020. 396: p. 125240.
    19. Vidhale, S.S.A.a.N.N., Bacterial Siderophore and their Application: A review. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 2013. 2: p. 303-312.
    20. Qian, J. and C. Berkland, Conformational Stability Effect of Polymeric Iron Chelators. iScience, 2019. 21: p. 124-134.
    21. Qian, J., et al., Polymeric Iron Chelator with Enhanced Iron Affinity as a Broad-Spectrum Antifungal Agent. ACS Applied Polymer Materials, 2021. 3(12): p. 6034-6039.
    22. Aroua, S., et al., RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C60-PVP conjugate. Polymer Chemistry, 2015. 6(14): p. 2616-2619.
    23. Fischer, F., 3-Mercaptopropionic Acid (3-MPA). Synlett, 2002. 2002(08): p. 1368-1369.
    24. Brown, D.G. and J. Boström, Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? Journal of Medicinal Chemistry, 2016. 59(10): p. 4443-4458.
    25. Falque, C.A.G.N.M.a.V., Amide bond formation and peptide coupling. Tetrahedron report, 2005. number 740.
    26. Ghosh, A.K. and D. Shahabi, Synthesis of amide derivatives for electron deficient amines and functionalized carboxylic acids using EDC and DMAP and a catalytic amount of HOBt as the coupling reagents. Tetrahedron Letters, 2021. 63: p. 152719.
    27. Wang, C., et al., Different EDC/NHS Activation Mechanisms between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir, 2011. 27(19): p. 12058-12068.
    28. Slocum, T.L. and J.D. Deupree, Interference of biogenic amines with the measurement of proteins using bicinchoninic acid. Analytical Biochemistry, 1991. 195(1): p. 14-17.
    29. Gao, B., et al., Immobilization of povidone-iodine on surfaces of silica gel particles and bactericidal property. Colloids and Surfaces B: Biointerfaces, 2010. 79(2): p. 446-451.
    30. Liu, P., et al., Quaternary ammonium salt of chitosan: preparation and antimicrobial property for paper. Open Medicine, 2015. 10(1).
    31. Mikolasch, A., et al., Synthesis of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron, 2002. 58(38): p. 7589-7593.

    QR CODE