簡易檢索 / 詳目顯示

研究生: 吳姿蓉
Zi-Rong Wu
論文名稱: 利用聚乙烯吡咯烷酮表面改質對矽水膠隱形眼鏡潤濕性之探討
Effect of surface modification with polyvinyl pyrrolidone on the wettability of silicone hydrogel contact lenses
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 矽水膠隱形眼鏡表面改質聚乙烯吡咯烷酮潤濕性
外文關鍵詞: silicone hydrogel, contact lenses, surface modification, polyvinyl pyrrolidone, hydrophilicity
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以矽酮高分子(Silicone)作為隱形眼鏡基材,開發具有親水性佳、抗蛋白沉積、高舒適性的多功能矽水膠隱形眼鏡,以達到長時間配戴及配戴舒適性的效果。
    本研究使用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisocyanate, IPDI)及甲基丙烯酸-2-羥基乙酯(2-hydroxy-ethyl methacrylate, HEMA) 合成矽水膠共聚物,以紫外光硬化交聯處理形成矽水膠薄膜,再進行溶劑溶脹預處理表面,以利在孔隙和表面上引入親水基團,透過過硫酸鉀(Potassium Persulfate, K2S2O8)引發形成自由基,以利聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PVP)接枝於矽水膠薄膜表面,從而改善其親水性。
    由FTIR光譜觀察到在波長1650 cm-1處(醯胺末端, -C=O)有一吸收峰,顯示出PVP成功接枝於矽水膠薄膜表面。透光度在改質前後皆可達89%以上,顯示出改質並不影響其透光率。含水率及透氧率經改質後有些微的提升,但抗拉強度及延伸性都變差。而親水性方面,改質前與改質後表面接觸角降低約45°,表面親水性有明顯提升。經原子力顯微鏡量測,表面粗糙度隨改質時間延長而提升。利用BCA蛋白質測定可得知,改質後矽水膠能有效降低表面蛋白質吸附。細胞毒性經ISO-10993-5判斷為無毒性。
    綜合以上結果,PDMS-PU-HEMA經由表面接枝PVP的方式改質,改質後的矽水膠,具有適當的透光性、透氧性、親水性及抗蛋白沉積,且無細胞毒性。儘管其抗拉強度及延伸性較差,但此矽水膠改質的新方法,對於做為眼科鏡片材料的應用具有良好的潛力。


    This study is aiming to modify the surface of silicone hydrogel contact lenses with poly(vinyl pyrrolidone) (PVP). The resultant contact lenses exhibited high wettability, anti-adhesion of proteins and high hydrophilicity. Our goal is to create more comfortable and longer-term contact lenses.
    To meet our goal, PVP is grafted to the surface of the contact lenses (PDMS-PU-PVP). A solvent swelling pre-treatment is carried out to introduce hydrophilic groups in the pores and on the surface. The modification is performed through chemical cross-linking and grafting of PVP by using potassium persulfate (K2S2O8) as a radical initiator. The resultant contact lenses exhibited reduced protein deposition and lower water contact angle. On the other hand, the optical transparency and water content showed no significantly change. In addition, the oxygen permeability (Dk) would remain up to 76 barrer which is the Dk of the PDMS-PU-HEMA control group. Furthermore, in vitro L929 fibroblasts assay showed that these hydrogels were non-cytotoxic. However, the mechanical properties of the contact lenses decreased with increasing modification time.
    Overall results demonstrated that the PDMS-PU-PVP hydrogels exhibited not only high oxygen permeability and optical transparency, but also hydrophilicity and anti-protein adsorption. Therefore, in spite of the lower mechanical properties, this new modification method exhibited a good potential in the application of ophthalmic lenses.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 圖索引 IX 表索引 XI 第壹章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第貳章 文獻回顧 5 2.1 水膠 5 2.2 水膠的合成與分類 6 2.2.1 化學性水膠 7 2.2.2 物理性水膠 8 2.3 智慧型水膠 9 2.3.1 酸鹼敏感型水膠 9 2.3.2 溫度敏感型水膠 11 2.3.3 光能敏感型水膠 12 2.3.4 其他型式之智慧型水膠 13 2.4 隱形眼鏡的介紹 14 2.5 隱形眼鏡分類 15 2.5.1 依鏡片材質之柔軟性 15 2.5.2 依鏡片之覆蓋範圍 18 2.5.3 依鏡片材質之透氧性 18 2.5.4 依鏡片可戴用時間 19 2.5.5 依鏡片用途 19 2.6 隱形眼鏡材料的特殊性質 20 2.6.1 含水量 20 2.6.2 離子電荷 21 2.6.3 透氧性 22 2.6.4 含水量和透氧性之關係 24 2.7 隱形眼鏡之蛋白質吸附 25 2.8 高分子材料表面改質 28 2.9 紫外光硬化交聯處理 30 2.10 Polydimethylsiloxane,PDMS-diol 31 2.11 Isophorone diisocyanate,IPDI 32 2.12 Polyvinyl pyrrolidone,PVP 33 第參章 實驗材料與方法 34 3.1 實驗材料 34 3.2 實驗設備 36 3.3 實驗流程 37 3.4 實驗原理及方法 38 3.4.1 實驗原理 38 3.4.2 實驗方法 40 3.5 物性分析 42 3.5.1 傅里葉轉換紅外線光譜測定 (Fourier-transform infrared spectroscopy, FTIR) 42 3.5.2 可見光透光率測定 (Transmittance) 43 3.5.3 平衡含水量測定 (Equilibrium water content) 44 3.5.4 透氧係數測定 (Oxygen permeability) 45 3.5.5 接觸角測試 (Contact angle measurement) 46 3.5.6 原子力顯微鏡表面型態分析(Atomic force microscope, AFM) 47 3.5.7 拉伸試驗 (Tensile test) 48 3.6 生物相容性試驗 (Biocompatibility) 49 3.6.1 蛋白質吸附 (Protein adsorption) 49 3.6.2 細胞培養 (Cell culture) 51 3.6.3 細胞存活率分析 (MTT Assay) 53 3.6.4 細胞毒性試驗 (In-vitro cytotoxicity) 54 第肆章 結果與討論 56 4.1 傅里葉轉換紅外線光譜測定 56 4.2 可見光透光率測定 59 4.3 平衡含水量測定 60 4.4 透氧係數測定 62 4.5 接觸角測試 64 4.6 原子力顯微鏡表面型態分析 67 4.7 拉伸試驗 69 4.8 蛋白質吸附試驗 71 4.9 細胞毒性試驗 73 第伍章 結論 79 參考文獻 80

    參考文獻
    [1] 許瓊文(2006)。嬌生攻下五成眼鏡族市場的秘密。今周刊,518, 112-113。
    [2] 張朝凱(2007)。近視雷射手術大揭密。眼睛保健聖經。
    [3] L.W. Jones, M. Byrne, J. B. Ciolino, J. Legerton, M. Markoulli, E. Papas, L. Subbaraman (2016) Revolutionary Future Uses of Contact Lenses. Optometry & Vision Science, 93(4), 325-327.
    [4] D. H. Walther, G. H. Sin, H. W. Blanch, J. M. Prausnitz (1995) Pore-size Distributions of Cationic 2-Hydroxyethyl Methacrylate (HEMA) Hydrogels. Polymer Gels and Networks, 3(1), 29-45.
    [5] Mei-Hui Yang, Lain-Jong Li, Tsang-Feng Ho (1994) Synthesis and characterization of polymethylsiloxane/poly(ethylene glycol) monomethyl ether copolymers. Journal of the Chinese Colloid and Interface Society, 17(3), 19-28.
    [6] Yu-Chin Lai. (1997) A Novel Crosslinker for UV Copolymerization of N-vinylPyrrolidone and Methacrylates to Give Hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 35(6), 1039-1046.
    [7] L. Bes, K. Huan, E. Khoshdel, M. J. Lowe, C. F. McConville, D. M. Haddleton (2003) Poly (methylmethacrylate dimethylsiloxane) triblock copolymer s synthesized by transition metal mediated living radical polymerization: bulk and surface characterization. European Polymer Journal, 39 (1), 5-13.
    [8] R. W. Korsmeyer (1991) Diffusion controlled systems: hydrogels. P. J. Tarcha (Ed.), Polymers for Controlled Drug Delivery, CRC Press, Cpapter 2.
    [9] B. D. Ratner, A. S. Hoffman (1976) Synthetic hydrogel for biomedical application. ACS Symposium Series, 31(1), 1-36.
    [10] S. A. Barenberg (1991) Report of the Committee to Survey the Needs and Opportunities for the Biomaterials Industry. Journal of Biomedical Materials Research, 16(9), 26-32.
    [11] A. S. Hoffman (2012) Hydrogels for biomedical applications. Hydrogels for biomedical applications, 64, 18-23.
    [12] O. Wichterle, D. Lim (1960) Hydrophilic gels for biological use. Nature, 185, 117-118.
    [13] I. Yannas, E. Lee, D. P. Orgill, E. Skrabut, G. F. Murphy (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sciences, 86 (3), 933-937.
    [14] N. A. Peppas. (Ed.) (1988) Hydrogels in medicine and pharmacy. CRC Press, 1.
    [15] 陳進富(2002)。淺談水膠在生醫之應用。化工科技與商情,38。
    [16] H. Cicek, A. Tuncel (1998) Immobilization of α‐chymotrypsin in thermally reversible isopropylacrylamide‐hydroxyethylmethacrylate copolymer gel. Journal of Polymer Science Part A: Polymer Chemistry, 36(4), 543-552.
    [17] L. Hovgaard, H. Brondsted (1995) Dextran hydrogels for colon-specific drug delivery. Journal of Controlled Release, 36(1-2), 159-166.
    [18] T. Coviello, M. Grassi, G. Rambone, E. Santucci, M. Carafa, E. Murtas, F. M. Riccieri, F. Alhaique (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. Journal of Controlled Release, 60(2-3), 367-378.
    [19] A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, S. S. C. de Smedt, J. Demeester, J. Krijgsveld, S. A. J. Zaat, J. Dankert, J. Feijen (2000) Combined Gelatin−Chondroitin Sulfate Hydrogels for Controlled Release of Cationic Antibacterial Proteins. Macromolecules, 33(10), 3705-3713.
    [20] N. A. Peppas, R. E. Berner (1980) Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials, 1(3), 158-162.
    [21] W. R. Gombotz, S. F. Wee (1991) Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267-285.
    [22] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, K. Monobe (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid and Polymer Science, 264(7), 595-601.
    [23] D. W. Lim, T. G. park (2000) Stereocomplex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein delivery microparticulate carriers. Journal of Applied Polymer Science, 75(13), 1615-1623.
    [24] A. Bajpai, S. K. Shukla, S. Bhanu, S. Kankane (2008) Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088-1118.
    [25] P. Gupta, K. Vermani, S. Garg (2002) Hydrogels: from controlled release to pH responsive drug delivery. Drug Discovery Today, 7(10), 569-579.
    [26] Y. Qiu, K. Park (2001) Environment sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 53(3), 321-339.
    [27] K. S. Soppimath, A. R. Kulkarni, T. M. Aminabhavi (2001) Chemically modified polyacrylamide g guar gum based crosslinked anionic microgels as pH sensitive drug delivery systems: preparation and characterization. Journal of Controlled Release, 75(3), 331-345.
    [28] N. B. Carlson, D. Kurtz, D. A. Heath, C. Hines, R. Flom (2004) Clinical procedures for ocular examination. New York: McGraw-Hill.
    [29] H. Katono, A. Maruyama, K. Sanui, T. Okano, Y. Sakurai (1991) Thermoresponsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butylamide) and poly(acrylic acid). Journal of Controlled Release, 16(1-2), 215-227.
    [30] 佘勝雄(2002)。利用二階段式自由基共聚合製備酸鹼應答型水膠及性質探討。國立中興大學化學工程研究所碩士論文
    [31] J. Anzai, A. Ueno, H. Sasaki, K. Shimokawa, T. Osa (1983) Photocontrolled Permeation of alkali cation through poly (vinyl chloride) crown ether membrane. Makromolekulare Chemie. Rapid Communications, 4, 731.
    [32] K. Ishihara, I. Shionhara (1984) Photoinduced permeation control of proteins using amphiphilic azoaromatic polymer membrane. Journal of Polymer Science: Polymer Letters Edition, 22(10), 515-518.
    [33] S. Holtz, J. Bargon (1995) Laser induced ablation of polymers using a patterned dopant generated from a leu co dye precursor via flood exposure: A “portable conformable mask approach to laser ablation of PMMA at 351 nm. Applied Physics A, 60(6), 529-535.
    [34] A. Mamada, T. Tanaka, D. Kungwachakum, M. Irie (1990) Photo induced phase transition of gels. Macromolecules, 23(5), 1517-1519.
    [35] T. M. Ong, W. Z. Whong, J. Stewart, H. E. Brockman (1986) Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures. Mutation Research Letters, 173 (2), 111-115.
    [36] I. C. Kwon, Y. H. Bae, S. W. Kim (1991) Electrically erodible polymer gel for controlled release of drugs. Nature, 354, 291-293.
    [37] Alexei R. Khokhlov, Sergei G., Starodubtzev, Valentina V., Vasilevskaya (1993) Conformational transitions in polymer gels: theory and experiment. Responsive Gels: Volume Transitions, 109, 123-171.
    [38] D. J. Chung, Y. Ito, Y. Imanishi (1992) An insulin-releasing membrane system on the basis of oxidation reaction of glucose. Journal of Controlled Release, 18(1), 45-53.
    [39] T. A. Horbeet, B. D. Ratner, J. Kost, M. Singh (1984) A bioresponsive membrane for insulin delivery. Recent Advances in Drug Delivery System, 209-220.
    [40] M. Czerner, L. A. Fasce, J. F. Martucci, R. Ruseckaite, P. M. Frontini (2016) Deformation and fracture behavior of physical gelatin gel systems. Food Hydrocolloids, 60, 299-307.
    [41] 王滿堂(2005)。隱形眼鏡學上、下冊。藝軒圖書出版社。
    [42] 原著R. P. Franz, R. E. Bauman, 主譯瞿佳(1994)。隱形眼鏡基礎。上海科學技術出版社。
    [43] 瞿佳, 呂帆(1997)。隱形眼鏡學。上海科學技術出版社。
    [44] 鄧日青(1999)。眼鏡配置原理即實作。徐氏基金會。
    [45] M. G. Kodzwa, M. E. Staben, D. G. Rethwisch (1999) Photoresponsive control of ion-exchange in leucohydroxide containing hydrogel membranes. Journal of Membrane Science, 158(1–2), 85-92.
    [46] K. A. Polse, M. Decker (1979) Oxygen tension under a contact lens. Investigative Ophthalmology & Visual Science, 18(2), 188-193.
    [47] F. M. M. Verdú, Á. M. P. Moreno (2004) Fundamentos de visión binocular. València: Universitat de València.
    [48] A. A. Azari, D. M. Albert (2014) Ocular pathology case reviews. Elsevier Health Sciences.
    [49] Efron NA. (2002) Contact Lenses A−Z. Butterworth-Heinemann, Oxford.
    [50] J. M. Goddard, J. H. Hotchkiss (2007) Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 32(7), 698-725.
    [51] Y. Wang, J. H. Kim, K. H. Choo, Y. S. Lee, C. H. Lee (2000) Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169(2), 269-276.
    [52] I. L. J. Dogué, R. Förch, N. Mermilliod (1995) Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. Journal of Adhesion Science and Technology, 9(12), 1531-1545.
    [53] T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, W. R. Laupan, S. L. Cooper (1984) Properties of segmented polyurethane zwitterionomer elastomers. Journal of Macromolecular Science, part B, 23, 175-199.
    [54] T. A. Speckhard, S. L. Cooper (1986) Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments. Rubber chemistry and technology, 59(3), 405-431.
    [55] Y. Camberlin, J. P. Pascault (1983) Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas. Journal of Polymer Science Part A: Polymer Chemistry, 21(2), 415-423.
    [56] 王朝陽, 趙耀明, 王浚, 李雄武(2006)。異佛爾酮二異氰酸酯溶液擴鏈合成聚乳酸類藥物緩試劑。精細化工,23,913。
    [57] B. M. A. Pizzi, W. Parsons (1994) Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding. Journal of Applied Polymer Science, 52(13), 1847-1856.
    [58] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. Reddy, N. Belomoina (1998) Synthesis and properties of silicon-containing polyamides. Journal of Applied polymer science, 65(8), 1533-1538.
    [59] L. Nikula (1990) Biocompatibility-Interactions of Biological and Implantable Materials. Journal of Clinical Engineering, 15(1), 72.
    [60] Jin-Zhu Wu, Tai-Bing Fan, Hong-Mei Wu (1998) The application and development of PVP in the field of medicine and pharmaceutics at home and abroad. Chemistry and Adhesion, 49-52.
    [61] H. Huifang, C. Yingde, C. Libin (2003) Application of Polyvinylpyrrolidone. Advances in Fine Petrochemicals, 11, 43-48.
    [62] L. Makkonen (2016) Young’s equation revisited. Journal of Physics: Condensed Matter, 28(13), 135001.
    [63] M. B. Huglin, M. B. Zakaria (1984) Observations on the homogeneity of crosslinked copolymers prepared by γ-irradiation. Polymer, 25(6), 797-802.
    [64] Ming-Fung Lin, Yao-Chi Shu, Wen-Chin Tsen, Fu-Sheng Chuang (1999) Synthesis of polyurethane-imide (PU-imide) copolymers with different dianhydrides and their properties. Polymer International, 48(6), 43-45.
    [65] B. A. Holden, G. W. Merrz (1984) Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Investigative Ophthalmology & Visual Science, 25, 1161-1167.
    [66] J. N. Smith, J. Meadows, P. A. Williams (1996) Adsorption of Polyvinylpyrrolidone onto Polystyrene Latices and the Effect on Colloid Stability. Langmuir, 12(16), 3773-3778.

    無法下載圖示 全文公開日期 2024/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE