簡易檢索 / 詳目顯示

研究生: 石安傑
An-Jie Shih
論文名稱: 針對片狀自組裝技術使用多圖案微影與自對齊導通孔製程之導引模板設計
Guiding Template Design for Lamellar DSA with Multiple Patterning and Self-Aligned Via Process
指導教授: 方劭云
Shao-Yun Fang
口試委員: 方劭云
Shao-Yun Fang
劉一宇
Yi-Yu Liu
李毅郎
Yih-Lang Li
呂學坤
Shyue-Kung Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 48
中文關鍵詞: 實體設計定向組裝嵌段共聚物層狀DSA自對準孔導向模板多圖案微影佈局分解
外文關鍵詞: physical design, directed self-assembly, block copolyme, lamellar DSA, self-aligned via, guiding templates, multiple patterning, layout decomposition
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用嵌段共聚物(block copolymers, BCP)的定向組裝技術 (Directed self-assembly, DSA)已經是一項具有發展性的光刻技術,可以在集成電路上生成微小的圖像。現今已經有許多研究探討使用圓柱型式BCP製作金屬穿孔/接點層的設計方法。然而,圓柱型式BCP受限於生成孔洞的固定間距和導向模板的位移誤差(guiding template distortions, GTD)。因此,只有很少的可行孔洞圖案可以使用模板進行製造,而且不良的成品仍然也是主要問題之一。另一方面,使用片狀型式BCP的層狀DSA成為另一種可用於生成孔洞的方法,該方法與自對準孔(self-aligned via, SAV)技術相結合,可避免孔位移誤差並生成各樣的線性孔洞圖案。在本篇,我們是第一篇提出使用SAV技術和多圖案微影技術(multiple patterning lithography, MPL)的層狀DSA導向模板設計。我們分別提出基於整數線性規劃(integer linear programming, ILP)的方法和啟發式方法,並且有考慮SAV技術的層狀DSA的設計約束。實驗結果證明了基於ILP的方式是最佳的,並且啟發式方法還可以有效地近似最佳解。


    Directed self-assembly (DSA) with block copolymers (BCP) has become a promising lithography technology for generating tiny features in integrated circuits. There have been many existing studies investigating the design methodologies using cylinder-forming BCP for via/contact layer manufacturing. However, cylindrical DSA suffers from the limited natural pitch of generated holes and the displacement errors due to guiding template distortions. Consequently, only few feasible hole patterns are manufacturable with a template and the unsatisfactory yield is still one of the major concerns. On the other hand, lamellar DSA using lamella-forming BCP emerges as another solution for hole generation, which in combination with the self-aligned via (SAV) process is immune to hole displacement errors and able to produce various linear hole patterns. In this paper, we propose the first work of guiding template design for lamellar DSA by using the SAV process and multiple patterning lithography (MPL). An integer linear programming (ILP)-based approach and a heuristic method are respectively proposed that consider the design constraints induced by lamellar DSA with SAV. Experimental results demonstrate the optimality of the ILP-based approach, and the heuristic method can also efficiently derive near-optimal solutions.

    Contents Abstract vii List of Tables xi List of Figures xii Chapter 1. Introduction 1 1.1 Multiple Patterning Lithography . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Directed Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 DSA-MP with Self-Aligned Via . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.7 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. Preliminaries 9 2.1 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ix Chapter 3. ILP-based Method 14 3.1 ILP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 4. Heuristic Method 19 4.1 Algorithm Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Via and Template Conflict Graph Construction . . . . . . . . . . . . . . 19 4.3 Graph-aware Template Design . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 ILP-based Multiple Pattern Coloring . . . . . . . . . . . . . . . . . . . . 26 Chapter 5. Experimental Results 27 5.1 Environment and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 6. Conclusion 31 Bibliography 32 Publication List 35

    [1] Y. Badr, A. Torres, Y. Ma, J. Mitra, and P. Gupta, “Incorporating DSA in
    multipatterning semiconductor manufacturing technologies,” Proc. SPIE, 2015.
    [2] Y. Badr, A . Torres, and P. Gupta, “Mask assignment and synthesis of DSA-MP
    hybrid lithography for sub-7nm contacts/vias,” Proc. DAC, 2015.
    [3] IBM ILOG CPLEX Optimizer. https://www.ibm.com/tw-zh/analytics/ cplexoptimizer
    [4] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015 benchmarks with fence regions and routing blockages for detailed routing-driven placement,” Proc. ISPD, 2015.
    [5] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition for double
    patterning lithography,” Proc. ICCAD, 2008.
    [6] J. Kuang, J. Ye, and E. F. Y. Young, “Simultaneous template optimization and
    mask assignment for DSA with multiple patterning,” Proc. ASPDAC, 2016.
    [7] J. Kuang, J. Ye, and E. F. Y. Young, “STOMA: Simultaneous template optimization and mask assignment for directed self-assembly lithography with multiple patterning,” in IEEE TCAD, vol. 37, no. 6, pp. 1251–1264, 2018.
    [8] K. Lai, C.-C. Liu, H. Tsai, Y. Xu, C. Chi, A. Raghunathan, P. Dhagat, L. Hu,
    O. Park, S. Jung, W. Cho, J. Morillo, J. Pitera, K. Schmidt, M. Guillorn,
    M. Brink, D. Sanders, N. Felix, T. Bailey, and M. Colburn, “Design technology co-optimization assessment for directed self-assembly-based lithography:
    design for directed self-assembly or directed self-assembly for design?,” J. Micro/Nanolith. MEMS, and MOEMS, vol. 16, no. 1, p. 013502, 2017.
    [9] Y.-T. Lin and I. H.-R. Jiang “Novel guiding template and mask assignment for
    DSA-MP hybrid lithography using multiple BCP materials,” Proc. DAC, 2019.
    [10] Y. Ma, J. Kye, G. S. Khaira, L. Hong, J. Word, Y. Sun, J. Mitra, J. A. Torres, G. Fenger, and H. J. Levinson, “Design technology co-optimization (DTCO)
    study on self-aligned-Via (SAV) with lamella DSA for sub-7 nm technology,”
    Proc. SPIE, 2017.
    [11] J. Ou, B. Yu, X. Xu, J. Mitra, Y. Lin, and D. Z. Pan, “DSAR: DSA aware routing with simultaneous DSA guiding pattern and double patterning assignment,”
    Proc. ISPD, 2017.
    [12] J. Ou, X. Xu, B. Cline, G. Yeric, and D. Z. Pan, “DTCO for DSA-MP hybrid
    lithography with double-BCP materials in sub-7nm node,” Proc. ICCD, 2017.
    [13] K.-H. Wu and S.-Y. Fang, “Simultaneous Template Assignment and Layout
    Decomposition Using Multiple BCP Materials in DSA-MP Lithography,” Proc.
    ICCAD, 2017.
    [14] Z. Xiao, C.-X. Lin, M. D. F. Wong, and H. Zhang, “Contact layer decomposition to enable DSA with multi-patterning technique for standard cell based layout,” Proc. ASPDAC, 2016.
    [15] Y. Yang, W.-S. Luk, H. Zhou, D. Z. Pan, D. Zhou, C. Yan, and X. Zeng
    “An effective layout decomposition method for DSA with multiple patterning in
    contact-hole generation,” ACM TODAES, vol. 23, no. 1, 2017.
    [16] H.-J. Yu and Y.-W. Chang, “DSA-friendly detailed routing considering double
    patterning and DSA template assignments,” Proc. DAC, 2018.

    無法下載圖示 全文公開日期 2025/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE