簡易檢索 / 詳目顯示

研究生: 陳盈如
Ying-Ju Chen
論文名稱: 316L與Inconel 600摩擦攪拌銲接後之腐蝕特性
Corrosion Behavior of Dissimilar Friction Stir Welding between 316L Stainless Steel and Inconel 600
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 程金保
none
鄭偉鈞
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 145
中文關鍵詞: 摩擦攪拌銲接異種材固態接合鎳基600合金循環極化維克式硬度。
外文關鍵詞: Friction Stir Welding, dissimilar weld, Inconel 600, 316Lsstainless steel, Cyclic polarization, Vickers hardness.
相關次數: 點閱:250下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以摩擦攪拌銲接處理將316L不銹鋼與鎳基600合金以對接方式接合,探討不同銲接參數對異質銲接件之顯微組織以及抗孔蝕能力之影響。另外,比較摩擦攪拌銲接與鎢極氣體保護電弧銲接之銲件的機械性質及抗蝕能力。
    利用維克式硬度實驗針對各區域進行硬度量測。銲接件先以循環極化(Cyclic Polarization)量測各區域的電化學特性,利用掃描式電子顯微鏡觀察表面形貌,及利用EDS分析腐蝕產物之成分。為了觀察蝕孔發生之位置,再以10 wt.%草酸進行電解蝕刻。
    實驗結果顯示,摩擦攪拌銲接在固定的轉速之下,因銲接進給率越快,入熱量越低,晶粒尺寸越小,因此攪拌區之腐蝕電位與硬度值較高。而各區域之腐蝕性值之比較中,熱機影響區因同時受到力與熱之影響,導致其抗蝕性下降較大。


    The effect of welding parameters (travel speed) on the corrosion behaviour of dissimilar friction stir welds in the 316 L stainless steel and Inconel 600 was investigated. It was found that travel speed is related with location of corrosion attack and mechanical properties.

    Hardness of each zone was examined by Vickers hardness method. DL-EPR (double-loop electrochemical potential reactivation test) was applied to evaluate electrochemical polarization characteristics of each zone. SEM and EDS were used to analyzed surface and precipitations of test specimen.

    The results showed that the welding speed faster, the grain size smaller when the tool rotational speed was fixed. It contributed to corrosion potential and hardness is higher. Furthermore, the HAZ (heat affected zone) is affected by force and heat in the same time, leading to corrosion resistance decreased.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 4 2.1 摩擦攪拌銲接 4 2.1.1 摩擦攪拌銲接之製程 5 2.1.2 雙面摩擦攪拌銲接 6 2.1.3 摩擦攪拌銲接之簡介與原理 9 2.1.4 摩擦攪拌銲接銲道流動行為 11 2.1.5 摩擦攪拌銲接後微觀結構 15 2.1.6 摩擦攪拌後的抗蝕性及機械性質 17 2.2 惰性氣體鎢棒電弧銲接 18 2.3 腐蝕 20 2.3.1 腐蝕之簡介 20 2.3.2 腐蝕之形式 21 2.3.3 鈍化 21 2.4 孔蝕 25 2.4.1 孔蝕型態 26 2.4.2 形成孔蝕的條件 27 2.4.3 孔蝕的機制 29 2.4.4 孔蝕的敏感位置 31 2.4.5 孔蝕指數 31 2.4.6 氯離子對孔蝕的影響 32 2.4.7 合金成分對孔蝕的影響 34 2.5 電化學原理及量測方法 38 2.5.1 線性極化 39 2.5.2 腐蝕電流的量測 40 2.5.3 循環極化法 42 2.6 加凡尼效應 46 第三章 實驗步驟與方法 48 3.1 實驗流程 48 3.2 材料組成與試片製備 49 3.2.1 摩擦攪拌銲接(Friction Stir Welding, FSW) 50 3.3 電化學實驗 52 3.4 維克式硬度實驗 54 3.5 分析方法與設備 56 3.5.1 分析方法 56 3.5.2 分析設備 58 第四章 結果與討論 60 4.1 銲接進給率為50 mm/min 63 4.1.1 鎳基600合金原材 (600 BM) 66 4.1.2 鎳基600合金熱影響區 (600 HAZ) 69 4.1.3 鎳基600合金熱機影響區 (600 TMAZ) 72 4.1.4 攪拌區 (SZ) 75 4.1.5 316L 不銹鋼原材(316 BM) 80 4.1.6 316L 不銹鋼熱影響區 (316 HAZ) 83 4.1.7 316L 不銹鋼熱機影響區 (316 TMAZ) 86 4.1.8 小結 89 4.2 銲接進給率為70 mm/min 94 4.2.1 鎳基600合金熱影響區 (600 HAZ) 97 4.2.2 鎳基600合金熱機影響區 (600 TMAZ) 100 4.2.3 攪拌區 (SZ) 103 4.2.4 316L 不銹鋼熱影響區 (316 HAZ) 107 4.2.5 316L 不銹鋼熱機影響區 (316 TMAZ) 110 4.2.6 小結 113 4.3 不同銲接進給率的影響 117 4.3.1 冷卻速度 117 4.3.2 微硬度 120 4.3.1 電化學 121 4.4 熔銲與摩擦攪拌銲之比較 123 4.4.1 微硬度試驗結果 123 4.3.2 電化學試驗 125 第五章 結論 126 參考文獻 127

    [1] A. Mohamed, and T. Mohamed, “Ni-Based Cr Alloys and Grain Boundaries Characterization,” International Journal of Computational Engineering Research, 2013. 03(5): p. 69-72.
    [2] M. Sireesha, S.K. Albert, and S. Sundaresan, “Metallurgical changes and mechanical behaviour during high temperature aging of welds between Alloy 800 and 316LN austenitic stainless steel,” Materials Science and Technology, 2013. 19(10): p. 1411-1417.
    [3] 許几權,"緩衝層在 SUS 316L 不銹鋼被覆鎳基超合金 52M 機械性質研究",機械工程系,民國98年,國立臺灣科技大學。
    [4] 陳崇平,"摩擦攪拌銲接技術的最新發展",中國造船暨輪機工程師學會,民國94年。
    [5] 黃朝鈿,"SUS 316L 被覆 Inconel 52M 機械性質研究",機械工程系,民國97年,國立臺灣科技大學。
    [6] H. Ming, Z. Zhang, J. Wang, E.H. Han, W. Ke, “Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint,” Materials Characterization, 2014. 97: p. 101-115.
    [7] C.Jang, J. Lee, J.S. Kim, T.E Jin., “Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel,” International Journal of Pressure Vessels and Piping, 2008. 85(9): p. 635-646.
    [8] K.H. Song, W.Y. Kim, and K. Nakata, “Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400,” Materials & Design, 2012. 35: p. 126-132.
    [9] 謝興達,''攪拌銲接-技術原理與產業應用'',機械工業雜誌,2009。
    [10] X.K. Zhu and Y.J. Chao, “Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel,” Journal of Materials Processing Technology, 2004. 146(2): p. 263-272.
    [11] 王朝正、鄭偉鈞、程金保,''鎳基合金與不銹鋼異質銲接件之應力腐蝕裂痕及高溫疲勞特性分析書'',104年度,期末報告書。
    [12] A.R. Kumar, S. Varghese, and M. Sivapragash, “A comparative study of the mechanical properties of single and double sided friction stir welded aluminium joints,” Procedia Engineering, 2012. 38: p. 3951-3961.
    [13] J.H. Cho, D.E. Boyce, and P.R. Dawson, “Modeling strain hardening and texture evolution in friction stir welding of stainless steel,” Materials Science and Engineering: A, 2005. 398(1-2): p. 146-163.
    [14] Y.F. Sun, Y. Konishi, M. Kamai, H. Fujii, “Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding, ” Materials & Design, 2013. 47: p. 842-849.
    [15] R.S. Mishra, and Z.Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering: R: Reports, 2005. 50(1-2): p. 1-78.
    [16] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, “Effects of friction stir welding on microstructure of 7075 aluminum,” Scripta Materialia, 1997. 1(36): p. 69-75.
    [17] G. Liu, L.E.Murr, C.S. Niou, J.C. McClure, and F.R. Vega, “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta materialia, 1997. 37(3): p. 355-361.
    [18] K.V. Jata, and S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, ” 2000.
    [19] Sahidi, S., “Friction stir welding of dissimilar meta,” 2013, Universiti Tun Hussein Onn Malaysia.
    [20] Y. Li, E. Trillo, and L. Murr, “Friction-stir welding of aluminum alloy 2024 to silver,” Journal of Materials Science Letters, 2000. 19(12): p. 1047-1051.
    [21] S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure., “ Low-temperature friction-stir welding of 2024 aluminum,” Scripta materialia, 1999. 41(8): p. 809-815.
    [22] M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, “Flow patterns during friction stir welding,” Materials Characterization, 2002. 49(2): p. 95-101.
    [23] Y. Li, L. Murr, and J. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Materials Science and Engineering: A, 1999. 271(1): p. 213-223.
    [24] W.B. Lee, Y.M. Yeon, and S.B. Jung, “The improvement of mechanical properties of friction-stir-welded A356 Al alloy,” Materials Science and Engineering: A, 2003. 355(1-2): p. 154-159.
    [25] L. Karlsson, , E.L. Berqvist, and H. Larsson, “Application of friction stir welding to dissimilar welding,” Welding in the World, 2002. 46(1-2): p. 10-14.
    [26] W.J. Arbegast, “Modeling friction stir joining as a metalworking process,” Proceedings of Hot Deformation of Aluminum Alloys III, 2003: p. 313-327.
    [27] K. Jata, K. Sankaran, and J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451,” Metallurgical and materials transactions A, 2000. 31(9): p. 2181-2192.
    [28] M.G. Fontana, “Corrosion engineering,” 2005: Tata McGraw-Hill Education.
    [29] 王振欽,''銲接學'',2006,高立。
    [30] Y.S. Sato, P. Arkom, H. Kokawa, T.W. Nelson, and R.J. Steel , “Effect of microstructure on properties of friction stir welded Inconel Alloy 600,” Materials Science and Engineering: A, 2008. 477(1): p. 250-258.
    [31] K. Song, W. Kim, and K. Nakata, “Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400,” Materials & Design, 2012. 35: p. 126-132.
    [32] Y.C. Chen , H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, et al., “Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel,” Journal of Nuclear Materials, 2012. 420(1) : p. 497-500.
    [33] R.W. Revie, “Corrosion and corrosion control,” 2008: John Wiley & Sons.
    [34] D.A. Jones, “Principles and prevention of corrosion,” 1992: Macmillan.
    [35] H. Böhni, T. Suter, and A. Schreyer, “Micro-and nanotechniques to study localized corrosion,” Electrochimica Acta, 1995. 40(10): p. 1361-1368.
    [36] Z. Szklarska-Smialowska, “ Pitting corrosion of metals. 1986: National Association of Corrosion Engineers,”
    [37] A. Sedriks, “Role of sulphide inclusions in pitting and crevice corrosion of stainless steels,” International metals reviews, 1983. 28(1): p. 295-307.
    [38] M. Streicher, “Pitting Corrosion of 18Cr‐8Ni Stainless Steel,”
    Journal of the Electrochemical Society, 1956. 103(7): p. 375-390.
    [39] J. Cleland, “What does the pitting resistance equivalent really tell us? ,” Engineering Failure Analysis, 1996. 3(1): p. 65-69.
    [40] A. Schneider, D. Kuron, S. Hofmann, R. Kirchheim, “AES analysis of pits and passive films formed on Fe-Cr Fe-Mo and Fe-Cr-Mo alloys,” Corrosion science, 1990. 31: p. 191-196.
    [41] I. Olefjord, and L. Wegrelius, “The influence of nitrogen on the passivation of stainless steels,” Corrosion science, 1996. 38(7): p. 1203-1220.
    [42] H. Baba, T. Kodama, and Y. Katada, “Role of nitrogen on the corrosion behavior of austenitic stainless steels,” Corrosion Science, 2002. 44(10): p. 2393-2407.
    [43] H. Tsuge, Y. Tarutani, and T. Kudo, “The effect of nitrogen on the localized corrosion resistance of duplex stainless steel simulated weldments,” Corrosion, 1988. 44(5): p. 305-314.
    [44] P.Levey, and A. Van Bennekom, “A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels,” Corrosion, 1995. 51(12): p. 911-921.
    [45] P.B. Srinivasan, V. Muthupandia, W. Dietzelb, V. Sivana, “An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels,” Materials & design, 2006. 27(3): p. 182-191.
    [46] K. Hashimoto, K. Asami, and K. Teramoto, “An X-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels in HCl,” Corrosion Science, 1979. 19(1): p. 3-14.
    [47] H. Ogawa, H. Omata, “Auger electron spectroscopic and electrochemical analysis of the effect of alloying elements on the passivation behavior of stainless steels,” Corrosion, 1978. 34(2): p. 52-60.
    [48] R. Brigham, and E. Tozer, “ Localized corrosion resistance of Mn-substituted austenitic stainless steels: effect of molybdenum and chromium,” Corrosion, 1976. 32(7): p. 274-277.
    [49] A.Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, “Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions,” Corrosion Science, 2008. 50(6): p. 1796-1806.
    [50] J.R. Scully, “Polarization resistance method for determination of instantaneous corrosion rates,” Corrosion, 2000. 56(2): p. 199-218.
    [51] W.S. Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists,” 1994: PairODocs Publications.
    [52] 柯賢文,''腐蝕及其防制'',2011,全華圖書股份有限公司。
    [53] 柯賢文、王朝正,''腐蝕及其防制'',2014,全華圖書股份有限公司。
    [54] K. Ralston, and N. Birbilis, “Effect of grain size on corrosion: a review,” Corrosion, 2010. 66(7): p. 075005-075005-13.
    [55] S. Jeng, H. Lee, T. Weirich, and W. Rebach, "Microstructual study of
    the dissimilar joints of alloy 690 and SUS 304L stainless steel,"
    Materials transactions, vol. 48, pp. 481-489, 2007.
    [56] Y.S. Lim, H.P. Kim, H.D. Cho, and H.H. Lee,"Microscopic examination of an Alloy 600/182 weld," Materials Characterization, vol. 60, pp. 1496-1506, 2009.

    無法下載圖示 全文公開日期 2018/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2018/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE